

SECRETS OF THE GREAT PYRAMIO

$\begin{aligned} & \text { DT } \\ & \text { 63 } \\ & \text { TS6 } \end{aligned}$	Tomplins, peter Secrets of the pyramid	Creat
\#9086		
QATE OUE	BORROWER'S NAME	mock
	L	
$12 / 5164$	Gun Qucisora	

Other books by Peter Tompkins
To a Young Actress Shaw and Molly TomDkins The Eunuch \& the Virgin (415) Galiforn

A Spy in Rome
The Murder of Admiral Daslan
Haly Betrayed

PETER TOMPKINS

SECRETS OF THE GREAT PYRAMID

with an appendix by Livio Catullo Stecchini

Harper \& Row. Publishers
New York - Evanston

To Henry B. Tompkins, whose avuncular suppor made possible a quarter century of cosmopolitan research: 10 my triends Alan C. Collins, John Newhouse and Cario and Nicola Caracclolo. In whose hospitable houses this book was largely writen: to my wile, who, though sho would rathe It had been a novel, was a constient help.

CONTENTS

Acknowiedgments xi Introduction xiii
ancient Background 1
Medieval Exploration 5
Renaissance and Revival of Interest 21
Tho Age of Enlighlonment 35
Exploring with Chisel and Gunpowder 56
First Sclentific Theories 70
First Confirmation of Sclentific Theorles 77 First Refutation of Scientific Theories 86 Selentific Theory Developed 108 A Theodolite for Surveyors 117 Almanac of the Ages 121 Astronomical Observatory 147 Astronomical Temples of Egypt 159 Geodellc and Geooraphic Landmark 176 The Golden Soction 189
Scientific Survey Gives Geographical Proof 201 Decline of Anclent Knowledge 214 Who Buill the Pyramld? When? And How? 217

Why Were the Pyramid Passages Plugged? When? And How? 236 Temple of Secret Initiation 256
More Secret Passages and Chambers 268
Astrological Obsenvatory 281
ppendix: Notos on the Rolation of Anciont Measures to the Great
Pyramid 287
Glossary 383
Bibliography 303
Index 405

ACKNOWILEDGMENTS

My first debt is to the courteous and efficient staff of the Library of Congiess, whose Insiliution-along wilh those of other helpful llbrarians round the worid-made the researen for this book a delight instead of an ordeal; they are a better and cheaper investment for our future than more weapons of destruction.

To Geraldine Dent, of Hopewell, Naw Jersey, and to Edward O. Alitchell, of IAcLean. Virginia. I wish to express my gratitude for painstaking nelp in reproducing the picture thich adorn this volume: to Diagram Lid. of London for the treamlined drawings which lllustrate the text.
Faiher Francis J. Hoyden, S.J., Director of Georgetown ollege Observatory, I wish to thank for his cheerful encouragement in the face of monumental problems: and Monsignor Parick W. Skehan for his kind assistance with the weighty tomes of the Semitics Library of Catholic University.

For a careful chocking of the mathematical properties incorporated in the Great Pyramid I am indebted to Philippe Dennery. author of Mathematics for Physicists. His mathematical anaiysis of the secret geometric structure of the Great Pyramid as discovered by the Danish ongineor Tons Brunos, made it possible to resolve tho problem of the geodelic and geographic lunctions of the pyramid.

Mosi grateful I am to Livio Catullo Stecchini, Professor of History of Sclence (characterized by Prolessor Giorgio de Santillana of MIT as "a Copernicus of the twentieth century" "l, for permission to quoto from numerous unpublished monographs, the fruit of thirty years research into he advanced scienceof geography, geodesy and asironomy developed by the ancient Egyptians and Sumerians, severat of which appear for the first time in the appendix 10 this volume.

This is indeed a cumulative effort, and I hope that my successors in pyramidal quests will be as lively and entertaining as have been my predecessors.
have taken the book's 350 lilustrations from the most disparaie Medteval, Renaissance, Romantic and Modern sources, from the 100 engravers of Napoleon's 20 -volumo Description de l'Egypte to the most recent archeologicel oumals.
lam indebled to the Royal Society of Edinburgh fer the original plates of the tirst photographs ever taken inside the Great Pyramid, by Profosser Piazzi Smyth in 1865.

In particutar I wish to thank Manly p. Hall lor permission to reproduce the illustrations on pagos 4 and 257 from his Encyclopedic Oulline of Mesonic, Hormetic, Qabalistic and Rosicruclan Symbolicel Philosophr; Mile. Lucy Lamy for permission to reproduce trom the works of R A. Schwaller de Lubicz. published in Paris by Flammation and Caracteres: Lubicz. publishedr in Paris by Flammarron and Caracieres:
Charlos E. Jeannerot-Gris, better known as Le Corbusier, for Charlos E. Jeannorot-Gris, better known as Le Corbusier, for
the illustrations on page 992 , from his the Modulor, published the illustrations on page 192 , from his The Modulor, published
by Harvard University Press: Albert Champdor for the illusby Harvard Universiiy Press: Albert Champdor for the illus-
Iration on page 25s, trom his Le Livre des Norts, published by Iration on page 259, rrom his Le Livre des Norts. published by
Albin Miehel: C. Funk-Hellet tor illustrations trom his La Bible Albin Michel: C. Funk-Hellet tor illustrations trom his La Bib et la Grande Prramide, published by Vincent Frbal: David
Davidson for 3evcral pletes from his The Great Pyramid: Davidson for 3evcral pletes from his The Great Pyramid:
Its Divine Message. published by Williams \& Norgate; Morton Its Divine Message. published by Williams a Norgate: Morto Edgar for plates from his The Great Pyramid, Its Scientilic Features, published by Bone 8 Hulley: Howard B. Rand fo
the intricato intericr of tho Pyramid on page 28, from his the intricato interier of tho Pyramid on page 28, from his The Challenge of the Great Pyramid, published by Desing various works listed in the bibliography: Georges Goyon for the illustrations on pages 252 and 251 from Revue Archeologique; Leonard Cottrell for the portrait of Flinders Petrio from his book The Mountains of Pharaoh, published by J. Hele: from his book The Mourtains ol Pharaoh, published by J. Hele:
and Sir filnders Petrie fo; the Illustrations on pages 98 and and Sir filnders Petrie fos the lllustrations on pages 98 and 99 Irom his 70 Years in Archeotogy, published by S. Low. Marston in London. The jacket and the extraordinary interio of the Grand Gallery and the King's Chamber on pages 1
and 16 are from Ludwig Mayer's Views of Egyot from the and 16 are from Ludwig Mayer's Views of Egypt from the Orlainal Orawings in the possession of Sir Rovert Ainsley Outing nis Embassy in Constantinople. published in London in 1804.

INTRODUCTION

Does the Great Pyramid of Cheops enshrine a lost science? Was this last remaining of the Seven Wonders of the World. often described as the most sublime landmark in history, designed by mysterious architects who had a deeper knowledge of the secrets of this universe than those who foltowed them?

For centuries a debate has been waged between supporters of such a theory and its opponents. with eminent scientists and academicians lining up on either side Though all agree that the Great Pyramid is at least four Though all agree that the Great Pyramid is at least four
thousand years old, none can say for certain just when it was built, by whom, or why.

Till recently there was no proof that the inhabitants of Egypt ol live thousand years ago were capable of the precise astronomical calculations and mathematical solut tions required to locate, orient and build the pyramid where it stands.

It was atributed to chance that the foundations were almost perfectly oriented to true north, that its structure incorporated a vaiue for π (the constant by which the diameter of a circle may be multiplled to give its true circumfereter of a circle may be multiplied to give its true circumfer-
ence) accurate to several decimals and in several distinct and ence) accurate to several decimals and in several distinct and
unmistaxabie ways: that its main chamber incorporated the unmistaxable ways: Ihat its main chamber incorporated the
"sacred" $3-4-5$ and $2-\nu^{\prime} 5-3$ triangles ($a^{2}+b^{2}=c^{\prime \prime}$) which "sacred" $3-4-5$ and $2-\nu^{\prime} 5-3$ triangles $\left(a^{2}+b^{2}=c^{\prime}\right)$ which
were to make Pythagoras famous, and which Piato in his were to make Pythagoras famous, and which Piato in hi
Timaeus claimed as the building blocks of the cosmos. Timaeus claimed as the building blocks of the cosmos.
Chance was said to be responsible for the fact that the Chance was said to be responsible for the fact that the
Pyramid's angles and slopes display an advanced underPyramid's angles and slopes display an advanced unde
standing of trigonometric values, that its shapo quite precisely incorporates the fundamental proportions of the "Golden Seclion," known today by the Greek letter op (pronounced $o \mathrm{~m} / \mathrm{i}$. , revered equally by masters of the cinquecento and luminaries of modern archilecture.

Accotding to modorn academicians the first rough use of π in Egypt was not till about 1700 B.C. -at least a millennium after the Pyramid; Pythagoras' theorem Is atmillennium after the Pyramid; Pythagoras theorem Is at-
iributed to the fith century B C.: and the development ot irlbuted to the fith century B C.: and the development of trigonometry to Hipparchus in the second century before
Christ. That is what the Egyptologists say, and that is what Christ. That is what the Eg
thoy put in thoir textbooks.

Now the whole subject has had to be revlewed.
Now the whole subjecl has had to be revlewed.
Recent studies of ancrent Egyptian hieroglyphs and the Recent studies of ancrent Egyptian hieroglyphs and the
cuneiform mathemalical tablets of the Babylonians and Sumeriena have established that an advanced science did

flourish in the Midale East at least three thousand years before Christ, and that Pythagoras, Eratosthenes, Hipparchus and other Greeks repuled to have originated mathematics on this planet merely picked up fragments of an ancien science evolved by remote and unknown predecessors.

The Great Pyramid, llke most of the great temples of antiquity, was designed on the basis of a hermetic geometry known onty to a restricted group of initiates, mere iraces of known mich percolated to the Clarical and Aloxandrian Greaks.

These and other recent liscoveries have made it pos tble to reanalyze the entlre history of lhe Great Pyramid stble to reanalyze the entire history of the Great Pyramid with a whole new set of reterences: the results are expio-
sive. The common-and Indeed authoritative-assumplion that the Pyramid was just another tomb built to momorlalize some vainglorious Pharaoh is proved to be falso.

For a thousand years men from many occupations and many stations nave labored to establish the true purpose of the Pyramid. Each in his own way hes discovered some facel, each in its own way valid. Like Stonehenge and other megalithic calendars, the Pyramid has been shown to be an almanac by means of which the lenglt ol the year including its awkward 2422 fraction of a day could be measured as accurately as with a modern telescope. It has been shown to be a theodollte, or instrument for the surveyor, of great precision and simplicity, virtually in destructible. It is still a compass so linely oriented ihat modern compasses are adjusted to it. not vice versa.

It has also been established that the Great Pyramid is a carefully located geodotic matker, or fixed landmark, on which the geography of the ancient world was brilliantly constructed; that it served as a celeslial observatory fom which maps and tables of the stellar hemisphere could be accurately drawn; and Ihat it incorporates in its sides and angles the moans for creating a highly sophisticated map projection of the northern hemlsphere. It is, In fact, a scale model of the hemisphere, correcily incorporating the geographlcal degrees of latitude and longitude.

The pyramid may well be the repository ot an ancient and possibly universal sysiem of weights and measures, the model for the most sensible syotem of linear and temporal measurements available on earth, based on the polar axis of rotation. a syslem first postutated in modern times a century ago by the Eritish aslronomer Sir John Herschel, whose accuracy is now confirmed by the mensuration ol orbiting satellites.

Whoever built Ihe Great Pytamid, it is now quite clear, knew the precise clrcumterence of the planet, and the lengith of the year to several decimals-data which were
not rediscovered till the seventeenth century. Its architects may well have known the mean length of the earth's orbi round the sun, the specific density of the planet, the 26,000 year cycle of the equinoxes. the acceleration of gravity and the speed of light

But to disentangle the authentic from the phony in what has been attributed to the builders of the Great Pyramid has required the lechnique ol a Sherlock Holmes. To climax the story there is a mystery of detection to match the classic slyle of Sax Rohmer's Abu Hassan, complete with radiography by cosmic rays.

Search inside

The three largu pyramids on the Giza platezu seen from across the Nille. The nearest
of the itree largo pyramids is that of Chesps Kephren's appears to be higher because il stonds on hlghier ground. The
third is that of Asykerinos. The Third is that of Alykerinos. Tha
two smallest pyramkds are attributed to Cheops' wife and daughter.

I. ANCIENT BACKGROUIND

Ten miles west of the modern city of Cairo at the end of an acacia, tamarind and eucalyptus avenue stands a rocky plateau. A mile square, it dominates the luxuriant palm olateau. A mile square, it dominates the luxuriant palm this man-leveled plateau, callod Giza${ }^{\circ}$ by the Arabs, atands the Great Pyramid of Cheops. To the ivest stretch the vast wastes of the Libyan desart.

The Pyramid's base covers 13 acres, or 7 midtown blocks of the clly of New York. From this broad area, leveled to within a fraction of an inch, more than two-and-a-hall million blocke of limestone and granite-weighing from 2 to 70 tons apiece-rise in 201 slepped liers to the height ol a modern torty-story building, etched against the cloudtess blue of the Egyptian skies.
in terms of solid masonry, the structure contains more stone than all the cathedrals, churches and chapels built in England since the Uime of Christ; as a reat in masonty It was not to be matched till the construction of Boulder Dam. Modern engineers are astounded by both the enormity of the problems involved in the construction of the Pyramid and the optician's precision with which these problems ivere resolved. As originally desioned, wilh its full mantle of polished limestone, the Pyramid must have been a dazzling sight Unlike marble, which tends to become ercoded with time end the weather, limestone becomes harder and more polished.

Near the Pyramid of Cheops stand iwo more pyramids. one, slightly smaller, attributed to Cheops' successor, Kephren, and another, smaller still, partly sheathed in red granite, attributed to Kephren's successor, Mykerinos, Together with six diminutive pyramids. supposedly built lor Cheops' wives and daughters, they form what ts known as the Giza complex. About a hundred more pyramidal structures of various sizes and in various stages of dilapidation follow the western bank of the Nile southward toward the Sudan, mosily within one degree of latitude, or io miles, but it is the Great Pyramid, unique in size and proporiton, which is of paramount interest in this story

Masl often spell Giza but translilerated by various authors a Disen er Jeeseh. the G is pronouncera nard by the Eayplians and soll by other Alabs-as in Jor Di.

Reconstuction of a pyramid,
showing the original polishod 1 mestone mantre which coverod the enlire structure.

What tho Great Pyramid looked like when it was compicted, or even for the first one or two millennia thereafter, is not recorded in history. No description of the Pyramid has suivived in the Egyptian texts. Legends have painted in various colors, marked with designs and pained in various colors, marked with designs and torian, Abd-at-Latit, says the Pyramid was once inscribed with unintelliglble characters in inscriptions so numerous hey would fill ien inousand pages: his colieapues assumed hem to be the gralliti of myriads of ancient tourists.

The lirst oyewitness doseriptions from classical authors are pitifully sparse. Thales, the father of Greek geometry, who visited the Pyramid sometime in the sixth cenlury B.C., Is repuled to have astounded its Egyptlan guardans with a correct computation ot its height by measuring s shadow at the time of day when his own shadow was aual io his height Unfortunatly ho left no datailed description of his visit.

The works of other classical authors known to have wilten about the Pyramid, such as Euhemerus, Duris of amoa, Aristagoras, Antisthenes, Demelrius of Phaleron, Demoteles. Artemidorus of Ephesus, Dionysius of HalicarDemotcles, Artemidorus of Ephesus, Dionysius of Haricar os: and survive only In fragmented quotation.
Herodolus, who saw the Pyramid about 440 B C. - Dy which time it was as ancient to him as his period is to us- says that each of the structure's four porfoctly triangular faces was still covered with a mantie of highly polished Ilmestone, the joints so fine they could scarcely e seen in his History, which contains the first comprehensive account of Egypt to have survived intact, Herocotus

Though no remairs ol a wivat door havo boen found desctiption lits the condillions: desctiption fits the condilions: lound at the south pyramid of
Oashur.

From the original entrance ong passage doscends into an ange ol $261 / 2^{\circ}$ or 0 slope of aboul 1 in 2 . The Dassare is 3 leet 5 inches wide and 3 loet $111 / 2$ inchoa high. he passage is buill into the the passage is buill into th
nasonry with boautifully inisned sides as write limetone. perieclly stralgit ut equally smoothly throug the bedrock of limostone on hich the Pyramid is lounde At 345 feet from the enfrance, the paseage levels oul
or 25 teat, then enters a ough:y cut pli.
deals with other aspects of the Pyramic, but not all his informatlon can be taken at lace velue.

Diodorus Siculus, the Greek historian who lived soon after the time of Christ. described the Great Pyramid's 22 acres ot polisned casing stones as being "complete and without the least decay." The Roman naturalist Pliny gives a report of nativos gamboling up the polishod sides to the delight of Roman tourists.

A man who may have had a lot to say aboul the Pyramids, in the forty-saven books of his Hislory. was Strabo. the pontine geographer who took a trip up the Nile in 24 B.C., but his history is lost: in the geographical appendix which survives he does little more than describe an entrance on the north face of the Great Pyramid made of a hinged stone which could be raised but which was indistinguishable from the surrounding masonry whiten it lay flush.

Strabo reports that this small opening gave onto a narrow and low passage. less than 4 leet by 4 , which descended 374 feet into a damp, vermin-infested plt dug from the live bedrock 150 feet below the base of the Pyramid. That this pit was visited In Roman times was deduced Irom initials supposedly written with smoking torches on the rough ceilings by wealthy Greek and Roman tourists.

Sometime during the early centuries of the Christian ors, the precise location of the movablo door was lost. It was a period when information ol all sorts began to grow scarce, when workly learning came to be despised and denlgrated Christianized Egyptians were forbidden access to the ancient temples, which were gither soizod or razod by tho Catholics; thousands of statues and inscriptions were disfigured; the hieroglyphs. whose meaning was already lost to most, became dead letters to the world to remaln so for the next fitteen hundred years

The great library of Alexandria, accidentally damaged by Julius Caesar end restored by Mark Anthony, was intentionally destroyed by a Christian mob on orders of the Christian emperot Theodosius in A.D. 389. All that was

ancient was pagan, and tharoforo sinful. Those intorested in mathematics and astronomy were persecuted and put to dealh for their Inquisitiveness. Even women weren't spared, as with the lovely Hypatia, who was selzed by an angry mos (inclied by the monks under the control of St Cyril, then Bishop of Alexandria), dragged into a church, stripped neked, and scrapod to doath with oyslor sheils. Her crime was to have been the daughter of the celebrated Alexandrian mathematiclan Theon, to have edited her father's works. taught mathematics, and become a leading philosopher in her own tight, renowned for her beauty, modosty and loarning."

As the Dark Ages continucd, little or nothing more was heard of the Great Pyramid of Cheops.

- Though her writings peristed with the burning of the lib:ary of Alexandria, Hypatia is known from contemporary wrilinge to have produced a commontary on tho Arithmelic ol Diophantus. one on the Asfronomical Canon ol Plolemy, and one on tie Comics of Appolonius of Perga Synesius. Bishod of Proremals requested her assistance in the corsiruction of an astrotaby and a hiydiuscope.

III. MEDIIEVAL EXIPLORATION

Tho lirst dewn of a renaissance came with the Arabs. When the followers of Mohammed swept into power in the Near East In the seventh century and captured Alexandria in A.O. 640, they found no library of any mportance, but a city of tour thousand palaces, four thousand baths and four hundrad theaters. Impressed by the opulence of the oity and the size of the Christian fleet, they decided to emulate both.

The Mohammedans' delighl in navigation engendered a need for geography, which requirod astronomy and mathematics. The search for such data wes to lead them to the secrets of the Pyramid. To broaden their knowledge. the Arabs set about transiating into Arabic all they could the Arabs set about translating into Arabic all they could
lay hands on of ancient Greek and Sanskrit material, ransacking monasteries for rere copies of Euclid, Galen Pleto, Aristotle, and the Hindu sages. In the midst of other wise Dark Ages, Mohammed's rellgious successors. the caliphs of Baghdad. were soon the most enlightened as well as the most powerful potentates. Undor caliph Harun Al-Rashid, whose leats were to be celebrated in the Arabian Nights, translators were paid In gold by the welght of each manuscripl.

Harun's young son Abdullah AI Mamun, who came to the throne in AD. 813, founded universitios, patronlzed literalure and science, and turned Baghdad--known as Dar-al-Salam, or City of Peace-into a seat of academic learning, with its own library and astronomical observatory.

Described by Gibbon as "a prince of rare learning who could assist with ploasure and modesty at the assemblics could assist with ploasure and modes!y al the assemblics
and disputations of the learned," young Al Mamun was responsible for the translallon tinto Arable of Ptolemy's great astronomical treatise. the Almagest. This work contained astronomical and geographical data, including the earliest star catalogue which has survived, all of which knowiedge had been lost to the West for centuries but was of greal value to the Arabs in their growing emplre.

Claiming that Aristotle had appeared to him in a dream, At Mamun commissioned seventy scholars to produco an "image of the earth" and the first "stellar map in the world of Islam." (Though they have since disappeared, these maps were consulted by the Arab historian Al Masudt In tie first halt ol the tenth century.) To check Ptolemy's

In the Arahien Nights the Great Pyiamld was leputed to havo magioot quallitis and to
contain extraorsinaly tiea. sures. E. W. Lane's plicture illustiales his nincte enthcentury translation of The
saiement that the circumference of the earth was 18.00 miles, Al Marmun ordered his astronomers to measure the actual overland length of a degroe of latilude across tho adjacent plain of Pelmyra, notth of the Euphrates. From a central point the observers moved north and south till they noted oy astronomical observation that the laillude had changed 1° : with wooden rods they meesured across had changed $1:$ with wooden rods they meesured across tho sandy plain and obtainod a degree of $562 / 3$ Arabic milos, the equivelent of 64.39 English statute milics. This figure, which gave a circumference of 23.180 miles, was more precise than Ptolemy's, out the Arabs had no vay of checking it: no one had yet circumnavigated the globe; indeed, mosl still argued that the vorld was flat!

Al Mamun, who ran an up-to-date intelligence servico under the direction of his postmaster-general employing as many as seventeen hundred old women as intelligence agents in Baghdad atone, was intormed that the Great Pyramid was reputed to contain a secret chamber with maps and tables of the celestial and terrestrial spheres. Although they were said to have been made in the remote past, they were supposed to be of great accuracy. The chamber was also reported to contain vast treasutes and such strange articles as "arms which would not rust" and "giass which might be bended and not break."

Al Mamun loreed his way Into the Pyramid to the west
of the main exis of tio nothem of the main exis of tho nothom face, at the level of the
seventh course of mass seventh course of masoniy,
He misjudged the level of the He misjudged the level of the
original enirance by staning ten courses 100 low, and
too far to the wott,

Arab historians, inoluding one with the imposing name of Abu Abd Allah Mohammed ben Abdurakin Alkaisi, have recounted the tale of Al Mamun's attempts to enter the pyramid. In 820 the young callph collected a vast conglomerallon of engineers, architects, builders and stonemasons to attack the Pyramid; lor days they soarched tho stoop polished surface of the northern slope for its secret entrance, but could find no trace of it.

Not to be thwarted. so the story goes, Al Mamun decided o Durrow straight into the solid sock of the structure in the hope of running across some passage within tho interior. Hemmer and chisel would not dent the huge blocks incrimesione, no matter how many blacksmiths stood read of limesione, no : 50 a more prmlive but ettective system was used. fires were puill ciose io the blocks ol masonry, and when these became red hot thay ware doused with and when these became red hot they were doused with cold vinegar until they crat
out the fragmented stone.

Search inside

Entrance to Descending Passage.

The subterramean pit cul
doop Into the bedrock is a doop Into the beadrock is al.
thost 600 teet directly belcw Thost 600 teet ditectiy beicw
the apex of the Pyramid. It is the apex of the Pyramid
31 leet in the east-west direction but only 27 feet norlh-soulh.
Though its ceiling is relatively smooth. ths loor is cut In several rough levels, the
lowest being 11 leet 6 inchos trom the celling.
In the soulh wall, opposite the entrance, is a low passage wich runs anotiler
53 leel southward before coming to a blind end. In the center of the floor is a square holo, which was 12
feet deap in 1838, but was du deeper by the English exploter Howard-Vyso in tho vain hope of linding an outiet for a further hidden cliamber.

For over 100 feet Al Mamun's men funneled into the sotid core of the Pyramid, excavating a narrow passage that beceme hotter, dustier and more constricted. Illumination by candle or flare consumed oxygen and poisoned the alr.

Al Mamun was on the point of giving up when a workman heard a muffled sound of something heavy falling somewhere within tho Pyramid, east of the IUnnel. Renowing their efforts and altering the direction of the bore, the workers broke into a hollow way "exceeding dark, dreadful to took at, and ditticuit to pass." It was a passage 3 1/2 teet wide by 3 teet 11 inches high, which sloped at a steep angle of 26°. On the floor lay a large prismatic slone which had been dlsoodged from the ceiling of the passage.

Struggling up the passage on all fours, the Arabs discovered the original secret entrance about 90 teet to the north. It had been placed 49 feet above the base of the Pyramid, ten courses higher than Al Mamun had guessed, and 24 leet east of the main axis of the north lace of the Pyramid.

Retracing their steps, Al Mamun and his men groped down the low, slippery, Descending Passage, out deep into ure rock of the plateau. At the bottom they were disappointed to find nothing but the unfinished, Ioughly hewn chamber, or "pit," with an uneven floor, containing nothing but debris and dust. On the far sido of it, an even narrower horizontal passage led 50 feet to a blank wall; in the lloor a weil shaft appeared to have been carved to a depth of 30 leet. leading nowhere.

From the torch marks on the ceiling, the Arabs deduced that the "pit" had been visitod in classical times and that anything of interest it may have contained had long since been removed.
What now intrigued the Arabs was the large prismatic stone that had falien from the ceiling of the Descending Passage. It had evidently covered the end of a large rectangular red-and-black granite plug which completely filled what looked like another passage stoping up Into the body of the Pyramld. Oi such a passage there had been no mention in the writings of Strabo or other classical authors; Al Mamun figured he might have stumbled onto a secret which had been kept since the original constructlon of the building.

The Arabs tried to chip or dislodge the granite plug. but it was tighily wedged, of indeterminate length, and it evidently weighed several tons. Spurred by the prospect of a new passage leading to some hidden treasure chamber, AI Mamun ordered his men to cut around the plug through

Search inside

The oranitg pluo in the ceisung, hallway down the
doscending psscain dosconding pascage, was of leldspar, which blunted tho Arabe' chisols.

Thie Arebs dug a targe cavity into the solter limestone blocks o the body of the
Great Pyramild to the west of the Dercending Passage. By means of this hole Al Mamun was able to clicumvent the 1 Three impenetrable granite his way to whal appeared to his way to whal apped upward into the Pyramid.

tho softer limestone blocks of the surrounding walls. Even this turned out to be more of a job than expected When he Arabs had bored beyond the first granite plug for over 6 leet, they encountered another granlle plug, equally hard and equally tightly wedged feyond it lay yet a third ay now Arabs had worned more than 16 feet Beyond the third aranile plug thay came upon a paseago flled wim a imestone plug which could be cracked with chisels and emoved plece by plece.
it is not recorded how many such plugs the Arabs encountored, but they may have had to clear a score or more before they could force their way into a narrow ascending passage, again less than + feet high and equally narrow. On their hanos and knees, holding their torches low, Al Mamun and his men were obliged to scramble up 150 feet of dark, slippory passogoway, at the some steep

The first-tevel passage, al the 10 p of the firat long inctine. is 127 treat long. 3 leor 9 inches high, and
3 loot 5 inches wide. A sudden drop of 2 feet mys. teriousiy appears in the passago.

Quoon's Chambor, with niche, excevated by arabs.
slope of 26°, betore they could ratse their heads and stand on a level spot.

In front of them stratched another low horizontal passage, no higher than the one they had painfully ascended.
Inching their way to the end of this passage, they tound themselves in a rectangular limestone room with a rough floor and a gabled limestono roof. Becauso of tho custom among the Arabs of placing their women in tombs with gabled ceilings (as opposed to flat ones for men), his room came to be known as the "Oueen's Cnamber" The bare room, 18 feet long, and almost square, had an empty niche in the east wall large enough to have contained an overlilesize statue Thinking the niche migh conceal the entrance to a second chamber, the Arabs cked their way into its solld masonry tor anomer yard before giving up.

Search inside

The namo "Ouoen's Cham-
ber" is considered a misnome by Egyptotogists, who claim by Eyplologlst, who
that the Egyptians placed no queens in the pyramids of the Pharaolis, The wails of the chanber
are unbtemished IImestone are unbtemlshed limestone
blocko, beoulifully finishod, but early exploters found thein mysteriousiy enclusted
with solf os much $381 / 2$ lich With solt os much $381 / 2$ lnch Origi
3 loot 5 inches niche was treasure seekers hav, but a passage through the back a passage Hrough the back
for soveral yardk Tho niche is iust over 16 feet high. The sides have four corbeled coulsos, and sro $613 / 4$ inchos
(3 cublis) aparl at the base and $201 / 4$ inches \{1 cubil) apart at the top
The chimber, placed directly boneoth the opex of the
Ryiamid, is almost square Pyiamid, is almost square:
18 feet 10 inclues from east 10 west and 17 foot 2 inches from noth to south. It has a dowle-pitched celing.
20 fool 5 inches at its highest, lormed oy huge blocks of
lot polished limestone a 1 a slope of $30^{\circ} 26^{\prime \prime}$, whtuch oxtend 1 teet beyond the support Ing walls: there is no pressure
or arch thruct. at tho apox the center of gravily of each block belng well behind the wall raco.
of roughly of the chamber is of roughly drossed slones, and appoars novor to another laycr of polithed another layer of polish
stonos were lo bo laid.

Retracing their steps to where they had lelt the low Ascending Passage, the Arabs raised their torchos into an ominous void above them. In the side walls joist holes indicated that the lloor of the Ascending Passage had once continued upwards, btocking and hiding the low passage o the Dueen's Chamber.

Climbing on each others' shoulders and raising their orches, the Arabs now saw that they were at the bottom of a nartow but grand gallery, about 28 feet high, which appeared to stretch upward at the same sleep slope as the Ascending Passage into the black and mysterious heart of the Pyramid.
The center of this new passage was very sllppery, but to elther side of II were tho narrow ramps slotted at regular intervals: they aftorded a better foothold.

The overall length of the Grand Gallery, shown here, is 157 teet. 1 is inclined 28°.
as is the Ascending passage. as is the Ascending Passage. The walls are 28 feet high. rising vertically in sevgn
courses of polished limestone, courses or poilshed limest
cach corbelcd 3 inchos loward the center. making the gallery narrow trom 62 Inches at the top. The first corbeling is 7 reet high. On oithor side of the contral 2.tool passage ace two ramps high; alos wide and 2 leet high; along the walls is o series of notches. The gallery is consldered an stchitoctural maatorplace. Egyptologsts have dittered as
to its funcilon, and that of its ramps and notchod hotos.

Holding thel torches high, the Arabs proceedod to escalade these ramps. At the end of another 150 -foot climb. they came upon a huge solld stone, ralsed 3 feet from the lloor, which they had to clamber up in oider to stand at the top of the gallery on a 6×8 foot platform

Beyond this plafform the floor continued level but the

celling fell to a mere 41 inches, forming a sort of portcullis entrance to a small antechamber.

Past the portcullis, AI Mamun's men were again obliged to stoop along a shor passage which led to yet another chamber.

Their torches revealed a great and well-proportioned room; the walls, floor and ceiling were all of beautifully wrought and polished red-granite blocks, squared and extremely finely joinled: "a right noble apartment, thirlylour leet long, seventeen broad, and nineteen high." Because of tis Ilat ceiling, the Arabs named it the "King's Chamber.

Al Mamun's men frantically searched every cranny of the chamber but could find nothing of interest or valuethere was no slgn of any treasure, only a large lidiess "sarcophagus" ol highly polished, dark chocolete-colored granite.

Some Arabian authors have reported that Al Mamun lound in the sarcophagus a stone statue in the shape of man. They say that within the statue tay a body wearing a broastplate of gold set with procious stones, en invaluable sword on his chest, and a carbuncle ruby on his head the size of an egg, which shone as with the light of day. According to the storytellers the statue was inscribed with a mysterious writing that no one could decipher; but thers is no historical evidence to support the tale.

To AI Mamun it appeared that either the vast mausoleum had been built about nothing but a single emply chest, or been bum about nollig bul a single emply chest, how whole place had previously been koled; how and by whom it was hard to imagine, considering obliged to break up in order to make their entrance.

[^0]

The sole llsm within the King's Chambor is a lidioss
cofigr cul from a solid block of chocolate-colored granito. whoco granules of feldspar
quantz and mica are even quartz and mica are even
harder than those of the chon hardur then those of the chom
ber wallis. They wera fabled ber waile. They wotrs fabled
to have cone not rom the Egyption quarries up tise Nilo si Syone but from the mylh
cal Atlantis or even fiom Americo.
Because the coffer is 6 feel 6 Inches long, 2 feel 3 feel 6 Inches long, 2 feet 3
inehes wido and 3 leol deep inchoc widdo andionabity ace. comimodale a human body, it has been called a sarcophaqus and is belleved by Egyptolegists to have been the
tomb of the Pharaoh Creops Homb of the Pharaoh Cheops.
A Aldge along the lop edge of tho coffer indicates it mey of the cotfer indicetes it may
have once had a shding lid. though no trace of the lid has boon fourd.

As the Arabs removed 22 acrea of 100 -inch-thick puro. limestone covaring flom the Greal Pyramid, vast mounds o high as 50 leel around the base.

In a fury of dieappointment, tho Arabs ripped up part of the lloor and hacked at the bcautiful gronlte walls, oven burrowing a short lunnel Into a comer of the room, all to no avail.

Legend has it that to pacity his disappointed men At Legend has it that to pacity his disappointed men A Mamun had a ticasure of gold secreted in the Pyramid
at night, amounting to just the wages due his mon, and at night, amounting to |ust the wages due his mon, and palmed or
For another four centuries the great pile lay undisturbed on the desert's edge, its outer casing virtually intact, its geometric shadows lengthening and shortening with the revolutions of each year. An Arab historian who saw the Pyramid in the eariy thirteenth century compared it 10 a groat fomalo breast rising from the bosom of Egypt. He remarked that it was still perfect except for the entrance carved in it by AI Mamuz.

Subsequently a series of earthquakes demolished large parts of norithem Egypt, and the descendents of AI Mamun' workers wroaked their revenge on the treasureless Pyramid by stripping it of its precious limestone casing to rebuild their new capital city EI Kaherah, "The Victorious." In the course of soveral generations they managed to semove the entire \gtrsim acres of 100 -inch-thick covering of the Pyra. mid, and even built two bridges especially to drag the heavler stones across the river on camel trains to Cairo for the consituction of a series of mosques and palaces.

The Nsosqua of Sultun Hasan itimestone blocks removed from the covering of the Greal
Pyranid.

One of the more renowned of the several hundred minareled mosques in what came to be known as "Grand" Cairo was built in 1356 by Sultan Hasan almost entirely with stones removed from the Pyramid. Fonly years later, in the reign of his ouccessor Barluk, when tho French Baron d'Anglure traveled to Egypt, he was able to see and report on the continued dismantiling of casing stones by Arab stonemasons. D'Anglure was naive enough to tall for Ihe historical canard that the pyramids had been bullt as granaries by the biblical Joseph to store Pharaoh's grain in years of plenty; but his old French glves a vivid picture of the despoilers lumbiling the massive blocks from the summit: ". . . certain ouvriers massons qul à force desmuroient les grosses pierres tailles qui font la couvordosmuroient les grosses pierres tailes qui font la couvorturo de desdits greniors, et los leissoient devalior à val." "Cenes masons demolished he course greal casing into the valley.")

The stripping of the llmestone lefi the core masonry exposed in a series of gradually ascending and receding steps to be weathered and worn by wind, sand and rain Some of the underlying core blocks proved to be ol pure limestone, others ol nummulitic limestone containing large quantilles of fossil shells resembiling coins.

Around the stripped Pyramid, Iragments of Ilmestone and rubble were piled so high that they finally obliterated the entrance which Al Mamun had forced in the notth face.

But the removal of the outer casing brought to light two huge transoms embedded in the masonry which formed a protective gable over the ilny gaping original entrance to the Descending Passage.

Only now, no one cared to reenter the Pyramid.

Search inside

III. RENAISSANCE AND REVIVAL OF INTEREST

Superstition shrouded the ancient structure. It was said to be haunted by ghosts and to be allve with venomous vermin. According to the Arabs the Great Pyramid was haunted at noon and sunset by a naked woman with largo haunted at noon and sunset by a naked woman with iag teeth who sed
them insano.
When Rabbi Beniamin ben Jonah of Navarre.
When Rabbi Benjamin ben Jonah of Navarre. an
adventurous twelth-century traveler, reached the Giza adventurous twelfth-century traveler, reached the Giza plateau trom Abyssinia he noted that "the Pyramids which are seen here are constructed by witchcrall."

Abd-al-Lalli, who taught medisine as viell as history in Baghdad, summoned the courage to enter the Great Pyramld shortly atter Benjamin's visit but admitted that within its silfiling interior he fainted from fear and came out more dead than alive.

The Pyramid's bad repulation spread so far affeld that when the fabulous English explorer Sir John Mandeville is supposed to have visited Egyp In the fourteenth century, he is said to have complained he dared not enter the Pyramid because it was filled with serpents: but the serpents Pyramid out to be as fabulous as his Travels which were turned out to be as fabulous as his Travels which were
produced by a notary in Liége who had never even tefl his produced by a
Not till the Renaissance had swept away some of the cobwebs of medieval obscurantism, and revived man's interest in science, was there enough motive for Europeans to enter the Pyramid and rationally examine is interlor.

In 1638 John Greaves, a 36 -year-old mathematician and astronomer who had studied at Oxford and laught goomotry in London, decided to set off for Egypt. His was no idle curiosity: like AI Mamun, he hoped to lind in the Grea yramid a datum that might help to establish the dimensions of the planet. Although the preceding century had spawned the great voyages of exploration, and Alagellan's crow had circumnavigated the earth, the sciences of geography and ostionomy were still so much in their inlancy-lo all ppearances- that no one had improved on Piolemy'sor AI Marnun's pecgraphical denree and nence no one knew the irue circumterence of the earth.

Search inside

The Giza pyramids and Sphinx as depicled in 1610,
showing European Iravelers.

John Greaves.
Statue of young Roman arcillect. Statillus Aper. in Votican gordens, from unich Greaves measured a Roman root which was related to the

In the Vatican gardens Greaves found a statuo commemorating a young architect of the first century A.D. T. Statilius Vol Aper, who had died in his iwenty-ihird year Portrayed in rellet were Aper's architecturat instruments, including a Roman loot. Greaves copied this foot and compared it to an English foot mado of brass which he had divided in 2,000 parts. "I spenl at least two hours," wrote

Search inside

Greaves, explaining the diligence with whict he performed the operation, "so often comparing the several divisions and digits of it respectively one with another, that I think more oircumspection could not have boen used.'

Greaves found that the Roman foot contained "1,944 such parts as the Engllsh foot contalns 2.000." The interesting result of this measurement was the tact that it confitmed a Roman fool to be exaclly $24 / 25$ ths of the Greek foot derlved from the Parthonon-a foot of which thoro are 100 in tho width and 225 in the length of the building.

Greaves's next problem was to estabilish the basic unit on Greaves's next problem was to establish the basic unit on
which the Pyramid hadbeen bullt-whether foot, pace, cublt which the Pyramid had bee
(an arm's length), or palm.

To help defray his expensos, Groaves applied for the patronage and essistance of the magistrates of the City of London, but they turned him down. Luckily the Archbishop of Canterbury mought enough of Greaves, and was sufficiently interested in rare Arabic and Persian manuscripts which might be discovorod in tho East, to patronize him. Greaves was ablo to equip himself with instruments for measuring the inside and the outsive of the Pyramid and for obtaining the declination and right ascension of the stars above it, and have enough money left over to spend a few weeks in Cairo.

Though a bookish mathematician and an ingrained antiquarian, Greaves was not without courage as an explorer. At the Pyramid he climbed onto the mound of Iubbish 38 feet high which surrounced it and gingerly let himself into the Descending Passage, "creeping like a serpent," horrified to

Ind himself in a storm of bats "so ugly and so large. exceeding a toot in length." such as he had never Imagined.

To scare off the bats and clear the air, Greaves resorted to liring his pistols; the explosions reverberated like cannon shots in the restricted passage of the Pyramid.

Working his way downward, Greaves reached the point where Al Mamun's original tunnel joined the Descending Passage, but was unable to proceed in a downward direction because of the debris left behind by Al Mamun's men when they hed broken up the series of limestone plugs that had filled the upper passage.

Following in the Arabs' lootsleps, Greaves climbed around the massive granite plugs and up into the low Ascending Passage. Having scrambled to the top, Greaves retraced Al Mamuris course along the short Horizonial Passage to the Queen's Chamber, where he found the stench ol vermin so olfensive he could not linger.

Everything Greaves came across w/as a puzzlo to him. The steepness of the Grand Gallery seemed to preclude its having been designed as a chamber: the difliculty of scaling its polished slope made It impracticat as a stalrway. Also, it was accessible only through the preceding very low passage.

Ho admittod nevertholess that tho Pyramid was "a vory stately piece of work, and not inferior, either in respect of the cutiosity of art or richness of materials, to the most sumpluous and magnillcent bulldings " He noted that it was bullt of polished limestone "very evenly cut in spacious

squares or tables": and he found that the "coagmentation or knitting" of the joints was so close it was scarcely discernible with the naked eye.

Making his way to the King's Chamber, Greaves was puzzied that so incredibly imposing a structure as the Pyramid should be built around a single chamber with a single empty coffer. He could see no apparent reason for its portcullis entrance or for the complexity of its antechamber where the walls changed mysteriousiy from limestone to granite. But being a scientist by nature, Greaves set to collecting and noting data about tho building

How the King's Chamber an s Antë̀hamber with its poricuilis are entirety cased y gratite blocks wilhin the

Entrance to the "well."

In the wost wall of the Grand Gallery, not far from the north wall a small part of the ramp c missing, allowing ontry bottom of this pit a short passago leads westward to an opening in the floor which eromes a shatt.
This shatt doscends through yramid and penetrates a rooky coro which was loft by the bullders as an anchor for
the Pyramid above the level or the Pyramid above the level
the foundation pavement. A groto opens off the shatt and the shaft passes through averal natural fissures in he bedrock
fhatt's terminus was a mystery. as was iis purpose.

Shaft entrance to the grotto

In London Greavea had furnished himself with a special 10 -foot measuring rod based or a standard English foot depostied in Guild Hall, Inely divided Into 10.000 equal parts. whit great care he measured the length, breadth and width of the King's Chamber, commenting that "the structure of it hath been the labour of an exquisite hand." He countod tis tiers of granite, measured their length and breadth, and did Hkew isê to the emply colfer. "even to the thousandith part of a toot," finding it to be 6.488 English feet

Picking his way back to the 1001 of the Grand Gallery, Greaves made a newand starlling discovery. From the ramp at one side, a stone block had beenf forcibly removed and a passage appeared to have been dug straight down into the bowels of the Pyramid

The aperture was a little over 3 leot wido; but as notches had been carved opposite one another on the sides of this had been carved opposite one another on the sides of this
"well," Greaves lowered himself Into t and descended about 60 leet, to where the shaft had been enlarged into a smati chamber, or "grotto," Betow him the shaft continued into the murky darkness, but the air was so loul, and the bats so higk, that Greaves decided to cilmb back up the way he had enter ed, puzzled by this stfange feature of the Pytamio.

That the well shaff was nol bottomless he established by dropping a lighted flare which continuod to flickor from its dopths.

Search inside

Chambers ond passages in
the Great Pyramid.

Pyramidographia:

$0 \mathrm{R}, \mathrm{A}$
DESCRIPTION OFTHE
P Y R A M I D S
IN
A $G r P \quad T$.

By JOHN GREAVES, Prefelfor of Affroromy in the Unizerfaly of Oxford.

 Bellon. lib. II. OBferv. cif +2 .

Astronomy at Oxford. All the facts and figures Greaves had accumulated he meticutously wrote up in a scholarly booklet entitled Pyramidographia.

His conclusions led to a very lively discussion-with as much con as pro-in which even the celebrated Dr. Willam Harvey, discoverer of the clrculation of blood, took par. Harvey was surprised that Greaves had not described, or apparonlly oven discovored, any conduits by means of which the contral chambers in the Pyramid could be ventitated from the exterior. According to Harvey such conduits were bound to have existed, or the air in the King's Chamber would have become extremely foul-"Seeing we never breathe the same air twice, but still new air is required to a new inspiration air twice, but still new air is required to a new inspiration
(the succus alibitis of it being spent in every expiration)." (the succus alibitis of it being spent in every expiration)."
Harvey's surmise furned out to be true, but was not established for another two generations.

Greaves had indeed noled "/wo inlets or spaces, in the soulh and north sldes of the chamber, just opposite from one another," but attributed the blackness within them to their being receptacles for burning lamps.

Before returning to England. Greaves had left his instruments, including the special 10 - 1001 rod, to a young Venetlan whom he had met in Egypl and who had accompanied him to the Pyramid, Tito Livio Burattini, who who was as anxious as Greaves to find out not only the exact measuremonts of the Pyramid, but the unlt-whether cubit, fool or palm-an which il had originally been designed.

Burattini's trip to Egypt had been subsldized by the Jesuit Father Athanaslus Kircher of Cracow, Poland, who had moved to Rome and entered into correspondence with Galileo Galllet on the sublect of a universal standard of measure.

At that time Galileo was living in seclusion near Florence, having been tried and imprisoned by the Inquisition for supporting the Copernican belief that the earth and the planets revolved round the sun, and the equally heretical concert that the earth and the sun spun on their own axes.

As a young man Gallieo had timod the osclilations of a lamp swinging in the Duomo of Pisa by means of his pulse beats and found the time for each swing to be the same, no matter what the ampllitude of the oscillation. thus discovering what is known as the isochronism of the pendulum.

Developing Galiteo's idea, Burattini had tried to obtain a universal standard of measure by using the length of a pendulum that would vibrate exactly 3600 times in one hour. or once every second, but the gotd-ball pendulum he devised proved impractical because it was found that its swing varied with temperature, location, and altitude above sea level.

Burattinl lingered four years In Egypt taking careful measurements with Greaves's instruments. and he sent reports of the resulte 10 Father KIrchor by lettor, which was lucky for the scientific world: on Buratinin's joumey through the Balkans back to his adopted Poland he was set upon by the Balkans back to his adopted Poland he was set upon by bandirs and deprived ol not only nis cash but all his notes on the Pyramid which he intended to have printed as a book in Italy.

Miere remained the data which he had sent to Father Klrcher: but it was from Greaves's dala that Sir Isaac Newton deduced that the Great Pyramid had been bullt on the basis of two different cubits, one of which he called "protane" and the other which he called "sacred." From Greaves's and Burattinl's measurements of the King's

Str isaac Newton is described by GIorgo do
Santillana, of NIT as "ihe lass of the magicians. the last of the Babylonians sand Sumorians, the last greal mind which boked on the visiule world with the samio oyos as thes
who began to bulld our intellectival world rather le than 10.000 years ago."

Chamber. Newion computed that a cublr of 20.03 Brifish inches produced a room with an even lengit of cubits: 20×10. This cubit Newton called the "protane," or Memphis, cubit; whereas a longer, more arcene cubit appcered to measure about 25 British inches.

This tonger, or "sacred," cublt Newton derived from the Jewish historian Josephus's description of the circumference Jewish historia Josephus s descriplion or he circumierence of tho pillars ol tho Tample at Jerusalom. Nowion estimated this cubit to be between 24.80 and 25.02 English inches,
but believed the figure could be relined through further but believed the figure could be relined through further
measurement of the Great Pyramld and oilher anclent measureme

Allof this Newton wrote up in a small and now herd-lo-find paper called A Dissertation upon the Sacred Cubit of tho Jews and the Cubits of several Nations: In which, from the Dimensions of the Greatest Pyramfo, as taken by Mr. John Greaves, the ancient Cubit of Memphis is determined.

Newton's preoccupation with establishing the cubit of the ancient Egyotians was no idle curiosity, nor just a desire to find a unlversal standard of measure: his general theory of gravilation, which he had not yet announ ced, was dependent on an accurste knowledge of the circumieronce of the oarth All he had to go on viere the old tigures ol Eralosthenes All he had to go on viere the old figures of Eralosthenes and his followers.

By ostablishing the cubit of tho ancient Egyplians, Newton hoped to find the exact length of their stadlum, reputed by classical authors to bear a relatlon to a geographical degree, and this he belleved to be somehow enshrined in the proportlons of the Great Pyramid

Unfortunalely Greaves's and Burattini's moasurements of the base of the Pyramid were incorrect because of the accumulated debris, and though Newton's ligure for the cubit was very close to perfect. the talse measurements of the base failed to give him the answer he was searching.

To resolve Nowton's problem, Burattini suggestod taking the actual measure of two or three degrees of latitude the actual masure of iwo or Three degrees of latitude across the fal countside of Poland, bul the operation proved too costly. Untortunate'y, nether Newton nor Buratini knew that in 1635 Richard Norwood, author of Sea-Man's
Practice, had made an obscrvation of the sun at noon at York Practice, had made an observation of the sun at noon al York using a sextant more than 5 feet in radius, and a similar
observatlon in London near the Tower; the distance between observation in London near the Tower; the distance between the two points was 9149 chains, and he thus obtained a figure of 69.5 English statute miles for 1° of latitude. This figure would have solved Newton's problem, but because of ine pollical unrest in Cromwellian England the did not hear of it: so he pul away his theory or gravitation for several

Search inside
more years, or until the French astronomer Jean Picard ropeated Norwood's feat with rather more fanfare.

In 1671 Picard measured a degree of latilude between Amiens and Malvolsine. His method was to measure a base line at Amiens very meticulously with wooden rods, then measure tho angles formod by this baso lino with a point on the horizon and deduce its distance by trigonometry. Selecting a series of points on hilitops easily distinguished with a telescope and measuring only the angles between their sides, he was able to string out a series of thirteen large triangles across the countryside and obtain a vory accurate degree ol 69.1 English sbalute miles.

On the basis of ithls computation Newton was able to announce his general ineory ol gravitation-inat all bodies in the unlverse attract each other in proportion to the product of their mass and inversely as the square of their distance apart-snd so launch a new era of physics.

As the English poet Alfred Noyes summed up the event:

> Newton withheld his hope

Untll that day when light was brought from France, New light, new hope, in one small glistening fact . .
Picard In France-all glory to her name-
Had measured earth's diameter once more With exquisite precision
Bul all this Anglo-Gallic dalliance was short-lived because an argument developed between Newton and a French family of astionomers, map makers, and surveyors called Cassini. Newton figured that the centrifugal force of the globe spinning on its north-south axis would cause the earth lo bulge at the equaior and be sllghtly flattened at the poles.
in his Principla Newlon estimated that this would have the effect of making a degree of latitude longer nearer the polos and shorter nearer the oquator.

The theory was heatedly opposed by the Cassinis, who had extended Plcard's triangulation survey north to Dunkirk and south to Perplgnan on the Spanish border, and maintained that the earth was efongated like an egg, as depicted in Plolemaic Egypt: thet the dogree of latitude was shorter north of Paris.

To sellle the argument the fiench Academy of Sciences sent out two expeditions, one to Lapland to measure an actual degree near the Arctic Circle and another to Peru to messuro a dogree near the equator.

After 18 months of being frozen in winter and devoured by mosquitoes in summer, the expeditlon to Lapland returned wilh a figure that showed a degree of latiude was longer near the flattened Pole. The Peruvian expedition suffered

The Graal Sphinx lies about Iwelve hundred foet southeast of the Pyramld of Cheops
noar the vallay bullding of Kophient Carved from a single sandstone knoll. the coloesus is 240 lect long, 66
leet high, and 13 leat 8 inchos leet high, and
at its widest.
The headdress and the cobra on the torehead are said to have been symbols of royalty. the teatures are thought to At one llme the saphien. have boon coated with plastot and painted in various colors. A rational explanation of A rational explanation of
the myalary of the Sphinx was prodiced by ine British astionomer Sir Norman Lockyer, who soid that ite seing nall lion, haif virgin
symolizes the iunction of the constellations Leo and Virgo which occurred at a summer solstice in the fourh mit lennium 8 C.
ven worse conditions, measuring from mountaintop to mountaintop in the Andean highlands, butafler ten years of misery. came back with a similar conclusion that the degree was shorter at the equator, vindicating Nowton: the Peruvian dogroo moasured 56.734 French toises, the Paris dcgree was 226 toises longer, and the Lapland degree 362 loises longer still.

Cassini, who very sensibly proposed the adoption ol a geodetic foot representing $1 / 6000$ th part of a terrestral minute of arc. would havo been estounded had he known that just such a foot had been in existence tor several millennia and that the Sohinx. which could be used as a geodetic marker to inclicate the equinox, aiso once had an gebelisk between its paws whose shadow could be used to compute n ol only the correct circumferonce of the earth but the variance in the degree of lalitude.
But In all this geodetic enterDrise the Pyramid's geodetic values were forgotten: its secrets remained as enigmatic as hose of its neighbor the Sphinx, which by this time was almost obliterated in the accumulation of wind-blown sand from the Libyan desert.

The roiss, of double arm's length, was ine standaid of measure used by the fiench bekre the development of lize meter.

IV. THE AGE OF ENLIGHTIENMENT

Travel to the Giza plateau became a dangerous undertaking in the eighteenth contury. Though Egypt was stitt nominally under the suzerainty of the Ottoman Turks. The treveler was likely to be robbed or killed by gangs of bandil Arabs unless protected by a bodyguard of friendly Janissaries such as had accompanied Greaves.

Not untli the timo of the American Revolution was any further discovery of importance made at the Pyramid. In 1765. Nathaniel Davison, who was later British Consul General in Algeria, was abte to spend a vacation in Egyp! in the company of Edward Wortley Montagu, former British ambassador to tho Sublimo Porte, and carcfully explore the Pyramid.

More Intrepid than Greaves, Davison lowered a lamp into the "well." tied a rope round his waist, and had himselt carefully lowered info its ominous darkness, about a hundred loot farthor than Greoves, only to find the bottom blocked with sand and rubbish. To Davison it appeared strange that anyone should go to such an enormous amount of eflort to dig a shaft almost 200 leel into the heart of ine Pyramid and simply come to a dead end. But there was nothing more he could do. It wes oxtromely close end filthy at tho bottom of the "well," and his candle soon buint up ivhat little air was available Also, an Immence number of huge bats made ditticult for Davison to keep his candle alight so he taboriously made his way back to the surface.

Abandoning this quest, Davison set about finding any other secret features within the interior of the Pyramid. At the top of the Giand Gallery he noted that his voice was the top of the Giand Gallery he noted that his voice was
answered in a curious way by repeated echoes which appeared to resonato from somewhore above him.

Davison's hole at the top of the Grand Gallery.

Placing a candle at the end of two long canes. Davison was ablo to spot a small rectangular hole about 2 feet wide at the very top of the Grand Gallery, where its wall joined the celling.

To reach this hole was a precarlous ordeal: the walls of the gallery were polished and slippery; the perch upon which he had to place his ladder was extremely small and stood high above a yawning drop of 150 feet, all the way down the Grand Gallery. Nevertheless Davison managed to raise seven short ladders till the topmost reached the small rectangular hole.

Davison climbed this rickety echeloning with difficulty At the top he found that he was prevented from entering the 2-100t hole by some 16 inches of bat oung, which nad accumulated through the centurles.

Masking his face with a kerchlef, Davison managed to wedge himsell into the stilling passage and crawl 25 leet to a chamber nol high enough to sland in, Dut every bit as wide and as long as the King's Chamber below it

Beneath the bot dung Davison was able to mako out a floor consisting of the tops of nine rough-hewn monolithic granite slabs, each welghing up to 70 tons, or as much as a mocem railway engine the under sides of these slabs formed the ceiling of the King's Chamber. To Davison's formed the ceill保 constructed of anolher simllar row of granite monoliths Otherwise, Davison could find nothing of elther historical or architectural interest: no treasure, no inscription, no sign of any further passage. His sole reward was to carvo his

Three distinct types of Egypilan bats as depictea in the eighteenth century. The
bats found by Greaves in the Great Pyramid were over a oot long, wilh an even greater wingspread or the more than a thousand hnown varietles
of those curioue noctumal of those curioue noctumal
mammats the "llying foxes" of Ausiralla have a wing-

\pm

Davison's and other gratimi In the Great Pyramid, Inctuding that of Mercator, the

Reverse of the seal of the Unlted Stales of Americ. According to Manly P. Hall, En erperi on Masonic lore not outy wate many of the oundere of the US. sovem celved atd from a seciet and august body exiating in Europe. which helped them bo stabitish the Uniled Slates fo 3 peculiar and particula hintiated tew." The Great Seas says Hall. was tho signature of ins exalled body. and the roveiso sido "is a treetroboard setung tonn symbalically the lask to the accomplishment of hith the U.S. Govemmont it inception." Tio eagle was apparently intondod to ropresent a phoenix. or symbol of the immortality of the human
soul. Great currency has boon given to the pyramid and trioenix symbois by placing

graffito on the wall and to have the newly discovered chambor named Davison's Chamber in his honor

When the American Revolution was followed by the French, and Napoleon set out to soread his polltical doctrines of Free Masonry, interest was rekindled in the Pyramid.

The American revolutionaries had already gone so far as 10 adopt the ancient Masonic symbol of the Pyramid for the reverse of the Great Seal of the United States.

In theit own revolutlonary housecleaning. the French outtawed the biblical seven-day week and reverted to the decades of the ancient Egyptians. The sane-culottes replaced the old holidays with feast days celebrating Nature and the Suoreme Being. the Human Race, the Martyrs ol Liberty. Truth, Justice, Paternal Yendemess, Conjugal Faith and even Misfortune. To replace the archaic toise made up of six pied de roi, the new aoademiclans remessured the arc from Dunkirk to Perpignan and adopted as a decimal unit the meter, which they computed to oe exactly one fen-millionth meter. which they computed to oe exactly

On the last day of the month of Floreal in tho IXth year of the revolution-our May 19, 1798-General Bonaparte, a sallow little man of 29 , sel sail from Toulon wilh a lorce of 35.000 soldiers crammed into 378 vessals, to conquer Egypt as a steppingstone io india and world domination. Bored by the company of his fellow officers, Napoleon spent most of his time with an extraordinary collection of ervdite French civllians ctassilfied as "savants." He had brought them along because they were reputed to have acquired a protound knowtedgo of Egyption antiquitios despito tho lact that no on het very little was known of Egyot's remote antlquity.

These savants, a hundred and seventy-flve of whom were scattered throughout the fleet, were treated with something less Ihan respect by Napoleon's lower ranks, who were

Mameluke Beys and their horsomon waro mestly con. Janissarles and Pages of the Subllmo Porto. troinod to police, tax. and control Egypt undor the nominal suzera
of tho Oltoman Sullan. In 1811 the Mamplukes were destroyed in one of the foulosit ut most succossflul ambushes a hlstory. May 1 they wer
invitod to a loast by Motiammed AIL. the Greekborn adventurer who governed in their thery on ictiy caparizoned horses. 420 Mameluke Beys arived at the itadel. Once they ware crowded into tho narriow
street. Mohammed All's AIbonian mercenaries opened fre from rooftops and windows with ritle and cannon The horses neloned. the street ran wihh bloed. tr hall an liour all he Mamelukos wero doad with the excepilion of Amir-b whase horso is reputed to
have lespl from the battlehave lespl
ments and cartied him sately
to Syria
convinced that the "graybeards" had been brought along solely to holp locato and dig up hidden treasuro. Once the learned gentlemen hadlanded in Egypt, where their function as to "civilize the natives," they were issued no rations o bllitets. and whenever the French came under attack from the Mameluke forces of Murad Bey, Napoleon's sotdiers would lorm their famous squares and shout "savants and asses to he center.'

Not thet the savants ran any real risk. When the French reached the Great Pyramid and were altacked by 10,000 Mameluke horsemen armed wilth glittering yagatans under he command of Murad himself, in a brilliant green turban stride a snow-white charger, the slaughter consisted entirely of the intrepid Mamelukes. Renowned for having withstocd the hordes of Genghis Khan, they were no match for the French sharpshooters and cannoneers.

In two hours two thousand Mamelukes viere killed for wo score Frenchmen

Bonaparte's general staft Bonaparte's goneral stat
artiving of the Grast Pyramio.

Nopoleon Bonaparto bolore
the Batte of the Pyiamids
the Battle of the Pyramios.

 July 32. 1798. in the shadow
at the pyramide of Giza. somo 25.000 Frenchmen, demoralized, hungry, and sleepy from a ten-hour mateh, wero ordorcd by Napolecn to tace what he ovarestimated io bo 78,000
Egyplians. Including 12000 mounted Mamelukes in mullicoiorod turbans and gold
embroldered catians lhat floated like gauze. The French formed into squares, len solulers deep, their cannons With remarkable discipline the French huld their fite it
upon them. The thamelukes
ouldid themselves in bravery, ouldid themselves in bravery,
slashing through the barrels of the Frencrimen's riftes with their scimitars, but in voln. In two hours the squares we Bottle of the Pyramides was over. and Napoleon was master of Egyal. As the flames from Colio's minarets, Napoleon's men leasted on hoards ol cap tured sweetmeats and looted the golidiaden bodies of the Into the Nitie to lloat seaward the news of the Egyption defoot.

The discoverles of the savants within the Pyramid were not sensational, mostly because of the hindrance of bats, which had greatly increased since the time of Devison.

Edmed-Françols Jomard, one of the younger but more astute of the savants, descilbed the painful process of moving through the passages bent double, seared by the heat of the torches, stifled by lack of sir, and sweating prolusoly from the effort.

Colonel Jean Marie Joseph Coutelle, a military membet of the expedillon, made another exploration of the well, but complained of being attacked by clouds of infuriated bats, "who scratched with thoir claws and stifled with the acrid stench of their bodies."

Discharging their Distols at the toD of the Grand Gallery. the french were astonished at the repeated echo which sounded like thunder moving away into the distance.

In Davison's Chamber the accumulation of bat dung had risen to 28 centimeters. The savants retired without further contribution to the problem of the Pyramid's interlor.

Outside, the savants were more successful. Jomard dogtrotted round the Pyramid, appalled by the amount of sand and debris which had accumulated on its flanks.

With the help of 150 Ottoman Turks, the French were able to clear the northeast and northwest corners of the building and make an important discovery.

They found the "esplanade" on which the Pyramid had originally been established. as well as two shallow rectangular "encastrements," or sockets, 10 feet by 12 , hollowed some 20 inches into the base rock, quite level with each other, where tho original cornerstones had once been laid.

These gave the savants two firm points from which to measure the base of the Pyramid. Though the huge mounds of debris all along the north tace of the structure still impeded their efforle, Jomard was able to make a serics of measuremenls up and down and around. These gave a length for the base of 230.502 meters, or 757.5 Engllsh feet. The Fiench now needed to know the height

Jomard look almost an hour to ctimb the Pyramid stopping on the vay for breath. Once he reached the summit, his imagination was exalted by the view of the green Della to the noth, the black strip of fertile earth along the Nite, the waverlke dunes to the west. Arab villages looked like anthills on the horizon; men at tho base of the Pyramid were barely distinguishable.

With a slingshot Jomard tried to hurl a stone far enougn to clear the base, but in valn. Not even the Arabs had been able to shoot an arrow from the summit that would clear the footing.

The positions of the scckets.

To oblain a height of the Pyramid, Jomard measured down each step, for a total of 144 meters, or 481 leet. By elemental trigonometry this gave him an angle for the slope ol $51^{\circ} 19^{\prime} 14^{\prime \prime}$ and an apothem of 184.722 meters.

The apothem is the slant height of the Pylamid, or line from apex to center of each base, down which a raindrop would run as tho shorteat diatance to the ground.

Because the outer casing was enlirely missing there was no way to know just how thick II had been: so the measure for the apomem had to be an estimate; but the figure of 184.722 meters was to open up a whole new vista for Jomard, who was a vory well-read young man.

Jomard remembered that according to Diodorus Siculus and Strabo, the epothem of the Pyramild was supposed to be one stadlum long. He also knew that an Olympic stadium of 600 Greek feel- from which our modern stadium is dorived -was a basic unit of land measure in the ancient world, one which was said to be related to the size of the earth.

Searching furthes through the Irunks full ot classics which the savants had brought 10 Egypt, Jomard found thal the stadium of the Alexandrine Greoks (of Eratosthenes and Hipparchus) had boon the equivalent of 185.5 meters-which was within a meter of what he had found for the apothem.

To reinforce the point. Jomard discovered that the

Search inside

Bonaparte's surveyors lound
that the Pyramid was accu. that the Pyramid was accu
rately orlented to the four cardinol pointe of tho compass and therefore used the meidian running itrought its apex tho bese line tor their Having mapped Lower Egypl. thoy uoro surprisod io find hat this meridian neatiy cin oela region into iwo more surprised when they lound that the diagonals drawn through the Pyramid. 1 right angles 10 each other ire Dolta.
Evidentiy a structure which could serve as sucfi a porfect goodotic bonchmatk could no and without considerable proticiancy in astroncmy, as vell as a developed under. tonding of the configurallor of the planet.
distance betweon the Egyptian localitios as measured by Napoleon's surveyors also coincided with the classical distances between these localities computed In stadia. it the stadium was taken to be 185 meters

Finally, Jomard learnt from his perusal of the classics that a stadium of 600 leet was considered to be $1 / 600$ of a geographical degree.

Jomard catculated that a geographicat degree at the mean latitude of Egypt was $110,827.68$ meters. Dividing this figure by 600 resulted in a measure of 184.712 moters. This was within 10 centlmeters of his value for the apothem.

Could the Egypllans, Jomard wondered have been
Could of eyp the have bee capabie of working our whir basic unik or measure--such as the stadium, the cubi, and
a
To reinforce this exciting hypothesis Jomard found that several Greek authors reported that the perimeter of the base

[^1]the Pyramid was intended to measure half a minute of ongitude. In other words. 480 times the base of the Pyramid was equal to a geographical degree
Jomard took the 1 10,827.meter degree and divided it by 80. The resulf was 230.8 meters, of again within 10 centimeters of his measured length of the base.

To find the length of the cubtt that woutd fit these measures, Jomard again corisulted the ctassics. According Herodotus 400 cublls made a stadium of 600 it Jomard divided the apothem of the Pyramid by 400 and obtained a cubit of .4618 meter. To his surprise this turned out to be the common cubit of the modern Egyptians.

According to other Greek sources the base of the Pyramid was said to bo 500 cubits. Multiplying his. 4618 metor cubit by 500 . Jomard got 230.90 meters-which was ust what he had measured for the base.

Jomard's theory was impressive to his colleagues: but when Gratien Le Pere and Colonel Coutelle re-measured the base of the Pyramid, they found it to be 2 meters longer. They also re-measured tho height with a specially designed instrument, slep by step, and the resulls showed Jomard's angle of incline to have been too low, and his apothem consequently too short.

In vain Jomard arguod that ho had found an even more surprising coincidence in that the four-hundredth part of his base of the Pyramid gave a flgure of .5773 meter, which was exacily the leng!h of a longer modern Egyptian cublt called the pyk belady.

Jomard's colloaguos insistod thore vias no ovidence in any other ancient Egyptian building of the use of such odd cubits and that the only adequate cubit they had found was the one marked on the nllometer of Elephantine, which was nearly the same as the "royal" cubit ol Memphis of 524 was nearly the same as the "royar" cubit of Memphis of the dimensions of the King's Chamber.

Unperturbed, Jomard continued his observations. It seemed to him that from the boltom of the Descending Passage, the ancients might have been able to see the transil across the meridian of some circumpolar star, and thus have prevlously established true north and correctly oriented the butiding. Because of the length and narrowness of the passage, he said, they might even have been able to see passag her in tis colleague argued thatio see and the trap ted any suoh observation.
Jomard suggested that the King's Chamber, with its emply sarcophagus, might not necessarily have been a tomb but a metric monument, designed to embody. and perpetuate, a system of measures.

Search inside

Niomereer discovered by the
rench it Eliophanting near French at Eliophantinn, noar yene. used by ble Eqyollans Nile al flood lime, and maiked n cubils very cosese to the

To the enc. Jomard remained convinced that the builders of the Pyramid had the necessary astronomical know-how to measure a geographical degree and thus the true circumference of the earth, and had developed an advanced sclence of geography and geodesy which they had immortalized in the geometry of the Great Pyramid

Jomard poiniod out that Herodotus, Plato, Diodorus and many others had all named Egypt as the birthplace of geometry, that Solon as well as Plato had come to Egypt to study geometry. and that Pythagoras had learnt trom the Egyptians his theorems of geometry, his aft of calculation, and his doctrine of metempsychosis.

Jomard's classically indoctrinaled colleagues could not stomach the Idea that their cherished Greeks might not be the founders of geometry; so the pursuit was dropped,

One last boost to Jomard's theory was given by one of Napoleon's lavorite generals, Louls Charles Antoine Desaix: on his way up the Nlie to conquer Upper Egypt, the 29 year-old general found a gorgzous temple near Thebes half

burled In the sand. On Its celling was a circular zodlac. Because the zodiac clearty depicted the skies over Egypt and showed the recognizable constellations in quite different positions, the savants deduced that it must have represented tho skies many centuries in the past and that the ancient Egyptians must have been acquainted with the zodlacal constellations in remote antiquity.

Unfortunately, an inscription also found in the temple appeared to date it from Ptolemaic timee, shortly betore our era; so another of Jomard's balloons was pricked.

Meanwhille Napoleon, whose logislical mind enabled him - figure that the Great Pyramid and its Giza neightors contained enough stone to build a wall 3 meters high and one meter thick all around France, had become attracted by one meter thick all around France, had beco
the arc ane qualitles of the King's Chamber
On the twenty-fith of Thermidor (the Revolutionaries August 12. 1799) the Generat-in-Chief visited the Pyramid with tho Imam Muhammod as his guide; ot a certain point Bonaparte asked to be left aione in the King's Chamber,

Searchinside

Napoloon in tho King 'e Chamoer.
as Alexander the Great was reported to have done before him.

Coming out, the general is said to have been very pale and impressed. When an aide asked him in a jocular tone it he nad witnessed anything mysterlous. Bonaparte replied abruptly that he had no comment, adding in a gentier voice that he never wanted the incident mentioned again.

Many years later, when he vias emperor, Napoleon -ntinued to refuse to speak of this strange occurience in continued to refuse to speak of this strange occurtence
the pyramid, merely hinting that he had received some presage of his destiny. At St. Holena, just beforo the end, he seems to have been on the point of confiding to Las Cases, but inslead shook his head. saying. "No. What's the use. You'd never belleve me."

When mifitary and polilical priorities obllged Napoleon to pull out of Egypt, he abandoned his savants to bo captured by the British. Chivalrously treated as civilians, they were allowed to return to France with their notes and drawinos. By the time they got home Napoteon had gained sufficlent power as First Consul to order them to produce a truly power as First Consul to order them to produce a truly monumental work on all they had discovered about the site buildings, inscriptions, life, language and manners of the ancient and modern Egyptians. With the heip of an army o painters, lypographers and was completod and publishod over a period of 25 years
stud

Napoleon's noles on hil
with the title, Description do l'Egypte ou Recueil dos observations el des recherches qui ont ét́g lailes en Egypte pendant rexpedition de rermee trancaise.

The work ran to nine tolio volumes ot text and iwelve of plates, and was described as "tho most immortal conception and glorious pertormance of a book ever realized by man." Jomard contibuled to it brilliantly, but his perspicacious hesis received little credi.

The savants were scooped by the wily Baton Vivant Denon, who brought out iwo volumes of the elchings he had made during the campaign in Egypt. His Voyage dans la basse et ta haute Egyote vecame an instant best seller, stunning Europe will incredible sights of an unknown world ol Egypt both ancient and modern, and launching a great voguo for the style known as Empiro.

Denon's publication and the Description of l'Egypte which followed it piecemeal were to turn what had been a French mililary disaster Into a cultural triumph. They also shattered once and for all the figment that before the Homeric Greeks thore had been nothing but primitive barbarism.

Scientifically the most sensalional discovery made by the French in Egypl proved to be a 3-1oot diortie slabengraved with hieroglyphics found by a Captain Bouchard in a branch of the Dolta near Rosetta. Hijacked by the Britiah, the

Fronticplooe for the twantyone volume Descripsion de
l'Egypte, bearing Napolcon's imporial crown, and showing a composite olccure of the prin. cipal monumonis doecribed by the French.

DESCRIPTION DE IEG;YPTE

Dominique Vivant Denon acompanled Napoloon on produced a seiles of drawings and etchings of the land of te Pharaohs which reveated whote new world to an mazed Europo.
Bom an anstocial and renowned mostly lor a series of pomographio etch hings, Denon wanaged to ingratiate himsert sseape oxecution Hyproticalty attracyve to women. Denon was befriended by such Pompaccur and Catherine II of Russio. Ho was introduced to Napoleon by hls wite Josephlile. \qquad ahead of the French columes somelimes under lite, to catcti the vivid scense af oction.
adde, in which the had been br as many which he had been is eyelids tipped oy the wincolown sand, and seeing hrough a voll of blood, Denon managed in reproduce in most evocalive scenes of full of verve and an exquisito senso of cemposition. Brought up to think Hrat Greek architecture of me bes oriod wes the rtendard of auly, he was seized by the Egyptian works "with no axtraneous ornmments or superliulty of ines." His inovolumo illustraled descripllon 1 Bonaparle's campaign in Egypt was an kistant bestselle Europe.
was mace a bacen by his emperor and became suporintindort of the Louvro and

Napoleon revewing the
rench troops at Rose
J. F. Champollion.

The Rosetra Slons, lound in 1799 , was ordered by Napolo
be placed in ine French hsillule in Calro. By an arucie of tho tooly of capiliutalion it was surrancerad to the Britien
n 1801, Maior General Tumer sailed with it to Portsmouth n1 1802 and decosiled it with the Socioty of Antiquations in the Brilush Musecult.
A platior or paris cast of its nscription in nieforolypons demotice Egyplian, and Giveek. cloner ine nleroooyonic ian. gungo of the ancient Egyplian Ind formulate a system heir orammar: this made It Egyplologisis b read the fillennial Inscciololons founs throughout Egypl

trophy ended up in the Egyptian Gallery of the British Museum. It lay there undeciphered for iwenty years, until another young Frenchman. Jean-François Champollion, was to crack the mystery of its anciemt hleroglyphs and throw the first real light on several millennia of Egypt's mystorious past.
As Napoteon had somewhat pompously remarked when elected a member of the National institute. "the only true conquests are mose gained by knowledge over ignorance."

Search inside

V. EXPLORING WITH CHIISEL AND GUNPOWDER

After Wellington's vietory at waterloo, the ettons of the Fronch savants al the Pyramid were forgotten and the sockets they had cleaned were covered once more with the sands of the desert.
It remalned for an obscure Italian to make the next impressive discovery within the Pyramid. While Napoleon was languishing on St. Holena, an oxophthalmic Genoese merchant, Captain G. B. Caviglla, arrived in Egypt os the master ola Mallese vessel Ilying the British flag. Selzed by he mystery of the Great Pyramid, he gave up ine sea and settled down to exploring the Pyramid and its neighbors on the Giza ptateau, financing himself by helping rich Europeans scavenge the surrounding tombs to assuage their taste for original Egyptian antiquities-a taste which ran to anything from scarab rings to thousand-ton obelisks.

Described by a contemporaryas an "enihusiastic devotoe t the shrine of antiquarian learning, who sacrificed country home. liends and fortune for the indutgence of the refined hough eccentric taste of exploring the hidden mysteries of the Pyramids and Tombs of Egypt," Caviglia claared out the bat excrement from Davison's Chamber and sct up housekeeping within it, tuming "the gloomy recess into a residenllal a partment"一though how ihls was accomplished residenilal a partment"一hough how in

Alexander William Crawlord (later Lord Lindsay), who encountered Caviglia in Cairo, found the Italian to be e deeply tellglous man, well versed in the Bible, which he constantly quoted, but also a man with some pretty strange deas about what he would find in the Pyramid. To Engtand Crawford wrote: "Caviglis told me that he had pushed his studies in magic, animal magnetism, etc. Io an extent which nearly kllled him ..to the very verge he said, of hat is torbiden man to know, and it was oniy the purity his intions which raved him"
Caviglia was convinced that it he dug into the Pyramid he would eventually encounter a secret room. To find it he hired a gang of Arab workmen to dig a funnel leading off from Davison's Chamber. But no matter how lar they dug thoy found nothing but solid masonry.

Caviglia oleared tho sand from Caviglice oleared thin sond form and reveated lie fooiting for a nissling obol:sk betwoon its paws.

At last Caviglia was obliged to give up the job; to console himself he sot about anaiyzing the mystory of the "well." Lowering himself down the shaft, Caviglia got as far as 125 feet below the grotto anly to find, as Davison had before him, that the bottorn was completely stopped, and that the air was so scarce his candle spluttered, making it difficult for him to broatho.

However, as the bottom appeared to be mostly sand and loose rocks. Caviglla was determined to unplug it and see where it led For a while he managed to impress a oang of Arabs into raising baskettuls of the sand all the way up to the top of the well; but the shaft was so tight, the air so letid with bat dung, and the dust so sulfocating, that the Arabs began to faint and refused to work furlher. Cavigila attempted to clear the air at ine bottom of the well by buming chunks of sulfur, but it was still impossible to breathe that far down for any longth of timo, and tho Arabs would not resume their digging.

Search inside

Caviglia docided to attack the problem from a differont angle. He would attempt to clear the main Descending Passage to the subterranean pit which had been filled since AI Mamun's time with the refuse of the plugs they had broken out of the Ascending Passage. Caviglia had the refuse carried up and out of the Pyramid, and was able to push his way on hands and knees down the passage for 150 feet; way on hands and knees down the passage for 150 feet; then the air became so impure and the heat so great that he
started to spit up blood. Still, he would not give up At the end of anothor 50 feet he made a discovery which seomed to indicate he might be on the right track. On the west side of the passage he found a low doorway leading into a hole. As the Arabs began to dig upward into this hole, Caviglia noted a strong smell of sulfur. it occurred to him that he might have hit upon the solution to his previous problem: the smell of sulfur might be coming from the bottom of the well, which must therefore be very close.

Digging harder, the Arab workmen dislodged some loose earth A pile of dust and rubbish fell onto them, including a baskot and ropes which had beon left at the boltom of the well. There was also a sudden gush ol air up the tunnel, and welt. There was also a sudden gush of air up the funnel, and
those in the passage were able to breathe with ease. Caviglia had discovered the end of the well. But a greater mystery remained. Why had it boen dug there, when, and by whom?

As Cavigila set about resolving this mystery, another

Where the well foins the Desceriding Passago.

Colone) (atterward Generall
strange figure foined in the Pyramid research, one quite the opposite of the romantio, uncommunicativo Caviglia, Aichard Howard-Vyse, a British Guards officer, at litst collaborated Howard-Vyse, a British Guards officer, al first collaborated
heartily with Caviglia, but they soon grew angry at each other and came to a heated parting.

Colonel Howarc-Vyse, son of General Richard Vyse and grandson of the Earl of Stafford, was a inartinet with little humor who had been equeriy to the Duke of Cumberland (later first king of Hanover) and had stood unsuccessfully for Parllament in the borough of Windsor. He has been described as thoroughgoing and as artless as Weillington, under whom ho served.

A trial to his family, who were pleased to have him away from the county seat in Buckinghamshire. even if it cost then some of the family patrimony. Howard-Vyse was 10 spend over 10,000 pounds sterling on exploration of the Pyramid site.

Howard-Vyse first saw the pyramids on a moonlit ride from across the Nile at Turah in November of 1836, during a trlp to Egypt as "a fashionable amusement seeker" in his own words he was attracted by "the remote antiquity and uncerlainty of their origin, and . . . the peculiarity of their mysterious construction." He was curious about "the purpose for which the passages and chambers already discovered were originally intended, but in much greater degree respecting any other passage or apartments which might reasonably be supposed to exist in the enormous structures."

Impressed by Caviglia's theories about the mysterious and hermetic purposes for which the Greal Pyiamid had orlginally been constructed. Howard-Vyse hired the services of a protessional civil engineer, John Shae Perring, who had been an assislant to Mohammed Ali, the khedive of Egypt. been an assisiant to Mohammed Ali, tho khedive of Egypt. erring was to take measurements of all the pyramids and plateau. as well as many of those farther south.

Search inside

In his La Pyramide de Cheops Gi-olle livist son secral Famand thek says that the shape of the Great Pyianid was such that it enabled
bodles (either animal or vege table) to become naturaily able) 10 become naturaity
nummified when placed wilhin the King's Chamber to says the end result was a deslceation or dehydration utrefaciton. Experiments re oalad that on uncleaned roul became mummlilied in hitteen days, a radish In It sneep in forty days.
Ancient Egyptians removed tho brain 3nd ontraits of a ody io be mummilied withou scarring it by puling the brain
oul through the nose and tho iscera throuph tre anal peiture
bine was thon soaked in bilie for a moath; anomanic plugs, ofton perfumed with onim, were placed in tho nostris and oiner orillces.
According to Manly P. Hall. According to Manly P. Hall. oose that orlainally only those who had leceived some grade ot hemiletic Inithation were unnmilied; for "it is cer
hat, in the cyes of tine gyptians, mummilica effoctually, prevented reinarnation."
idered necessam consoutg, or thosso who had falled opass the tests of initiation The body of the inillate. gays Hall, 'wae praserved
atter death as a specles tailisman or maierlal basis for tho maniloctetion of the ooul upon earth." When the body a "god-fiko" Pharaoh was
mummitied it could sonvo 260 medlum Ihrough which su ivors could comanunicale and plead their causo with "the rachs appear to have been
 to Dersons ol royal lank, and o anyone who could afford it mummillied.

Howard-Yyse sel up nis headquarters in an empty iomb near the Great Pyramid and was soon employing a larger number of workmen than anyone sinoe the time of AI Mamun, often as many as seven hundred, using Caplain Caviglia as superintendent of works.

All went well till the colonel chose to take an extended tour up the Nile to inspect a further series of pyramids. Whon he returned he was outraged to find that Captain Cavigtia had almost entirely neglected the Great Pyramid and was using the men hilred by Howarc-Vyse to Search for mummies and little green idols in the nelghboring buria: plts.

Caviglis became equally outraged at the colonel's reprimands, and gesticulated abusively declaring that 'he at one had the head to conduct excavations and to understand the value of 'curios' and 'anticos,' the colonel having nothing bul monoy."

When the colonel asked for the relum of his money, Caviglia disdainfuliy appeared at breakfast in the colonel's tent and threw on the tabie the money wrapped in an old slocking.

I was the end of Caviglia's exploring in Egypl. He retired to Paris, where he was sporadically supported by another great scavenger of aniliquilies, the former British ambassador to the Sublime Porte, Lord Elgin.

Howard.Vyse took over Caviglia's duties. In the words of a Victorian lady admirer, the colonel "sat down before the Gieal Pyramid as a forress to be besieged and through Giealer and sprine and the buining summer ot Egypt, wher all ravelers had ift the country, became the sole
 director of operaliona, olerk of the works and paymaster of his hundreds of workmen, day after day, monith after month unil exploration to the fill. For nol only was he one of those men who was nevar known fo turn back aller having pur his hand to tho plow, but ho was a roligiously [sic] minded man, a devout Christian, who felt that he was in this case called to a cerlain work for the Master, and thought In the firsi instance he had distrusted himseif in a new field of tabor

- Mummy flesh was in great demand in Europe during the sixteenth and seventecnth centuries as a medicinat: it wes e common drug to whict was used to heal cuts and bruises. mummy liesh was believed to make fractures unite in a lew minutes and to be sood for all kinds of irteinal allments. Mien murnmies became scarce traders used the bodiss of executed Christianz, or the bodies removed from hospitale many of which had dlod of loothsome diseases. The bodies were stulted with bilumon, urapped in bandages and baked

Construction chombers above the King's Chamber.
so that he had thought it better to use the purchased help the ltallan protessionat yet when that failed he became most admirable example to all kinds of men, rich and poor aliko, of giving himself to the work, putting his own shoulder to the wheel, and never quitting it until the end was gained, during all the lime. too, preserving the utmost urbanity, but dealling out the strictest justice in a manner that made a most honorable and lasting impression on the tawny Arabs around him."
In the Queen's Chamber Colonel Howard-Vyse had relays of men work day and night digging up the floor in front of the niche, but all they found was an old basket: so they efilled the hole.

In Davison's Chamber they found a crack in the ceiling hrough which they could run a reed aboul 3 leet long. Believing this to be an indicallon of a simllar chamber above Howard-Vyse had the workmen chiset their way into the granite over their heads. But the stone was 100 hard, and again tho Arabs could not stand the heat in the restricted pace of Dovison's low-ceilinged chamber.

Special quarrymen were imported from the Mokatam nills across the valley When even they could not manage tho job, the colonel rosorted to gunpowder to blast his way pward. To handle the charges he found a workman called Daued who lived mostiy on hashish and alcohol. Daved successfully set oft the blasts-a job that was particularly dangerous as the splintered granite flew about like shrapnel.

When the dust subsided Howard-Vyse found that they had indeed broken through to another chamber. whilch he chauvinistically named atter Wellington. Its floor was the top of the nife monolithic blocks of granite which formed the rough-hewn ceiling of Davison's Chamber, each block weighing over 50 tons. About a yard above them lay another llat ceiling made of eigh! blocks of granite.

The new chamber had a strange effect on those who entered; it turned them black. Instead of bat dung, the floor was covered with a thin black powder which when analyzed turned out to be exuviae, or the cast-off shells and skins of insects. Of living insecis there were none to be found

Convinced that the monoliths of the ceiling were in lum the floor of a third chamber, HowardVyse ordered the blasting resumed. The colonel's excavationts above the King's Chamber became more and more difficult as they rose verlically to a height of 40 reet and took three and a half months to accomplish.

One by one, three more chambers were found above two already discovered, the uppermost being gabled with huge blocks of sloping limestone. These chambers

Search inside

As some of the quariy marks lound in the chambers are hielcglyphns signilying 'Yeat
17," Egypolocoista deduced 17." Egyplologists doducod
that ine but ding had rasched that stage in the seventeenth year of the kng 's rign. Most of the malke were roughly deubed In red painn and ap-
peared upside
down, Indicaling they wisere quarry nadickland nol decorations. Similac. marks, mostly rod,
but occas sionaly black were but occassionaly black, wero
also lound on the llist fue or six coutses of the Pyromid, behind the casing blocks Howerr-Vyse sent coples of
the wryon maks the crryon marks to Somucl
Birch of the Betisish Museum who branillific one of the ovals os belonging to King Suphio. or Shiofo. or Khufu.

Sectional drawing of the
KIng's Chamber. looking west
dseovered by Howard. Vysa
Lady Arbulhnol's Chomber dse.overed by Howard.Vysa. discougred by Howard. Vyse.

Ceifling corsiructlon above Campbell's Chamber

Howard-Vyse named in turn for Admiral Nelson, for Lady Ann Arbuthnot, wife of Lt . General Sir Robert Arbuthnot, who happened to visil the Pyramid shortly atter the room was discovered, and for Colonel Campbeil. Her Brittanic Majesty's Consul in Cairo.

The most interesting discovery was not so much the chambers themselves but some red-paint carlouches daubed on the Inner walls of the upper chambers. Thanks to the Rosetta Stone and Champoltion's successors, one of these cartouches was recognized by Egyptologisis as bolonging to Khufu, believed to be the second Pharaoh of the Fourth Dynasty, called Cheops by the Greeks, whose relgn was thought to have occurred in the third millennium before our era

There was, of course, no way to prove that this Khufu was indeed the Cheops who had relgned in Egypt. But the fact thal similar carlouches had been found in the quariles ol the Wadi Magharah hills, from which much of the stone for the Pyramid was derived, added weight to the assumption.

One thing seemed clear. Whoever had daubed the cartouches on the inner wails or the upper chambers must have done so before the chamber was seated and the Pyramid completed; there appeared to be no entrance or exit other than the one blasted by the colonel.

Doubt slill lingered thal there might have been a far earller king with a similar cartouche, quite unknown to Egyptologists; but until further evidence could be adduced, it seemed hard to go against tho theory of the Pyramid having been bullt in the reign of the historic Cheops, as having been bullt in the reign of the historic Cheop
As for the reason for the live superimposed chambers, It was the conclusion of Howard-Vyse, and many who came after him, that thoy had boon designed to relievo the flat

Search inside

Air vent in the north wall of he Kinos Chamber.

Casing slones and pavement as oxposed by Howard-Vyse. oth entiances can be seen At Mamunts on the siall
anlfarice len courses higher.

celling of the King's Chamber trom the pressure of the 200 moro foot of solid masonry pilod above it.

Another remarkable discovery made by the colonel in the walls of the King's Chamber was to vindicate the hypothesis of Dr Harvey. Greaves had found the two 9 -inchwide openings in the side walls of the King's Chamber, but it was not till Mr. Hill, ono of Howard-Vyse's assistants, who ran a hotel In Coiro, climbed high up on the outer surface of the Pyramid and lound two similar outlets that it was established they were connected for over 200 teet right through the solid masonry to the holes in the King's Chambor. The colonel's ongineer, Porring, was nearly decapitated when a stone dislodged by Hill came crashing all the way down one of these conduits.

When the condull was cleared, an Immediate rush ot cool air entered the King's Chamber. Thus ventilated, the temporaturo of this chamber in the center of the Pyramid was to remain at an even and pleasant 68 degrees, irrespective of the weather or season outside, a prehlstorlc system of air concitioning. This acced substance to Jomard's theory that the chamber might have boon tho repository for weights and measures which require an even temperature and constant barometric pressure. such as the Paris observatory for measurements of standards 85 feet betow ground.

Even more sensational for those who wete bent on unteveling the secrets of the Pyramid was the next discovory of Howard-Vyse. Ever since the Middle Ages, when the Arabs had despolled the outer casing, the whole perimeter of the base of the pyramid had been heaped migh with tragments of limestone, and sand and debris, often in piles as high as 50 feet. The two northern cornere uncovered several years earlier by the Fiench had already been buried again. This ime Howard-Vyse decided to clear away a patch of debris in the center of the north facade to see if he could get down to the very base and bedrock of the Pyramid. In doing so, he was to make a great discovery: two of the original polished-limestone casing stones on the lowest level of the Pyramid were still in the spol where they nad been originally placed

This ended the argument aboul the casing; il silenced orever those who had continued to consider it a fiction that the whole of the Pyramid had once been covered with a fine manlle of limestone The original Ilmestone was here, and so finely carved that it was now possible to orrectly mesoure the angle of the stope on which the Pyramid had originally been constructed. The blocks, 5 fee Pyramid had originally been constructed. The blocks, 5 fee $51^{\circ} 51^{\circ}$, a lilite sharper than the one estlmated by the French.

Search inside

Hewn to the correct angle and polished to a unitorm surface, they were quite perfect, in the words of HowardVyse. "In a sloping plane as correct and true almost as modem work by opilcal instrument makers. The foints were scarcely perceptible, not wider than the thickness of silver paper."

The colonel also managed to uncover part of the original pavement on which the building rested, and which appeared 10 stretch away to the north "It was well laid and beautiluliy finished," noled Howard-Vyse, "but beneath the edifice it was worked with even greator exactness, and to the most perfect level."

Though the reason for this astounding accuracy on the nothern side was not to become apparent for some years, Howard-Vyse summed up his discoveries thus: "I consider the workmanship displayed in the King's Chamber, in the pavement and the casing stones, is periectly unsivaled."

The colonel had the casing stones quickiy covered up pending permission to take them to the British Museum, but he wes not able to prevent the infuriated local Moslems from uncovering them again and smashing the line edges with hammers, Jealous that Christians might obtaln and dispose of something of value in their countiy.

With the angle of $51^{\circ} 51^{\prime}$ of the casing stones and the base length ol 763.62 leet measured by the Frenchmen Coutette and Le Pére, it was now posslble to obtain by trigonometry a new dimension of the Pyramid. Its perpendicular height to where the missing capstone was presumed to have come to a point was figured to be 485.5 fect, or 147.9 meters, above the center of the base.

In 1840 Colonel Howard-Vyse sailed for England with his accumulated notes. Back home, at his own expense, or his family's, he produced iwo eleganl volumes crammed his family's, he produced iwo eleganl volumes crammed
with detalled but patronizingly victorian descriptlons of his exploits in Egypt, called Operations Carried on at the Pyramids of Gizeh in 1837. The book had the merit of including quotations from the works of $i 1$ Europeans and 32 Aslatic authors who had wrilten about the Pyramid from the lith century B.C. to the nineteenth century

The colonel's assistant John Perring also produced a handsome volume with some lovely copperplate etchings, The Pyramids of Gizeh Irom Aclual Survey and Measurement on the Spot.

Unfortunately, Howard-Vyse was to lose his best trophy, tho sarcophagus of Miykerinos, which ho had found in the ublerranean chamber of the Third Pyramid; tho ship carrying it foundered in a slorm off the coast of Spain and has sunk in deep water.

But the general measurements taken by Howard-Vyse and Perring were to opon a whole new phese in the study of the Great Pyramid, now to be ennobled by the appellative "pyramícology."

Search inside

VI. FIRST SCIENTIFIC THEORIES

A poet and essayist who had never set eyes on the Pyramid was to take the measurements of Howard.Vyse and those of the French savants and draw from them a sot of conclusions. the most fat-reaching thus far about the origin end purpose of the Pyramid.

John Taytor, the son ot a Loidon booksetler, whose regular job was editing the London Obsorver, already in his fifties when Howard.Vyse returned from Egypt, was to spend the next thirty years collecting and comparing accounts of traveters who had visited the Pyramid.

A gifted mathematiclan and amateur astronomer. Taylor made models to scale of the Pyramid and began to analyze the results from a mathematlcian's point of view. To account for the discrepancies In the length of the base reported by successive travelers-which increased progressively from the 693 foot of Groaves to the 763.62 foot of the French -it occurred to Tayior that as each measurer had arrived on the scene, more sand and rubble had been cleared from the base. Each had measured accurately, bul at a constantly desper layer of masonry.

Taylor set about drawing and redrawing every feature of the Pyramid on the basis of the measurements reported by Howard-Vyse, so as to see what geometricat or mathematical formulas might be derived from the structure.

Taylor was puzzlod as to why the buildors of tho Pyramid should have chosen the particular angle of $51^{\circ} 51^{\prime}$ for the Pyramid's taces instead of the regular equilateral triangle of 60°.

Analyzing Herodolus' roport of what the Egyptian priests had told him about the surface of each face of the Pyramid, Taylor concluded they had been designed to be equal in area to the square of the Pyramid's height. It so, this meant the building was of a particular if not unique this meant the building was of a particular if not unique goometric
Taylor then discovered that if he divided the perimeter of the Pyramid by twice its height, it gave him a quotient of 3.144, remarkably close to the value of π, which is com puted as $3.14159+$. In other words, the height of the Pyramid appeared to be in relation to the perimeter of its base as the radlus of a clicte is to its ctrcumference.

This seemed to Taylor far too extraordinary to attribute 10 chanco, and ho deduced that the Pyramid might have been specifically intended by its builders to incorporate the Incommensurable value of π. Il so, this was a demonstration of the advanced knowleoge of the bultders. Still today the oldest known document which indicates that the Egyp-

- Nol till tho aixth century was π coricelly workod out to the lourth decimal point by the Hindu sage Ayp-Bhala. II look another thousand years belore the Dutchman Pierre Melius calculated τ to six decimats by means of the fraction 33s/113. In 1593 Francols Viete carried the computation to eleven figures, snd a geneeration
loter Rudolph Von Coulin, just belore he died, took + to 127 figuros oter Rucolph Von Coulin, lust belore he died, look \uparrow to 127 figure by postulating a clrclo with $36,893,488.147 .419,103,232$ sides. In
1813 the English mathematician Willam Stanks developed or 10 707 decimals. inodem computers nave cartied the operation to 10.000 polnis of decimat, but with no sotution to this appatenty incommensurable number.

Search inside

Itans had a knowiedge of the value 01π is the Rhind Papyrus, dated about 1700 B.C., and therefore much later Papyrus, dated about 1700 B.C., and therefore much later
than the Pyramid. Found in the wrappings of a mummy in 1855 by a young Scollish archeologist, Henry Alexander Rning, the rare papyrus is now in the British Museum. It gives a very rough value for π of 3.16 .

Soarching for a reason for such a π proportion in the Pyramid, Taylor concfuded that the perimeter might have been intended to represent the circumierence of the earth at the equator while the height represented the distance from the earth's center to the pole.

Porhops Jomard had boen right: perhaps the ancient designers had measured the length of a gecgraphical degree multiplied it by 360° for the circumference of the globe, and by the π relation had deduced the polar radius of the earth, immortalizing their knowledge by making the circum. ference to scale with the perimeter and the radius to scale with the height of the Pyramid.

Taylor underlined his thesis: "It was to make a record of the measure of the Earth that it was built." He then etaboraled: "They knew the Earth was a sphere; and by obselving the motion of the heavenly bodles over the eatth's surface, had ascertained its circumference, and were desirous of loaving behind them a record of tho circumforence as correct and imperishable as it was possible for them to constiuct."
But it was evident to Taytor that the builders of the Pyramid could not have used for their calculations such a unit as the British loot, which fitted neither the height nor the base exactly: he therefore looked for a unit that would retain the π proportion and til the Pyramid in whole numbers.

When he came to $366: 116.5$ he was struck by tho similarity of 366 to the number of days in the year and wondered if the Egyptians might have Intentionally divided the perimeter of the Pyramid into units of the solar year.

He then noticed that if ho converted tho perimeter into inches, It came to very nearly 100 times 366 . Also he was susprised to see that if he divided the base by 25 Inches. he susprised to see 366 result Could the anclent Eoyptians blained ine same 366 result. Could the ancieni Egyplans close to the British Inch? And a cubit 25 such inches?
By coincidence, Sir John Herschel, one of Britain's most eminent astronomers at the beginning of the nineteenth century, had just postulated a unit halt a human halr's breadth longer than a British inch as the only sonsiblo earth commensurable unit, or unit based on the actual size of the earth.

Relation of a nemisphere to the Pyramid.

Herschel criticized the French meter derived from a curved metidian of the earth as being erratic and variable from country to country becauso the earth is not a true sphere, and each meridian of longitude would therefore be diflerent. (What's more the French had erred, and produced a meter ihat vas .0002 too shon.)

According to Herschel the only really reliable basis for a standard of measuro was the polar axie of the earth the straight line from pole to pole-which a recent British Ordnance Survey had fixed at 7898.78 miles (by taking the mean of all the available meridlans measured). This translated into 500.500 .000 British inches, or an even five hundred million inchos if the British inch were hall a human hair's breadth longer.

Herschel suggested that the regular British Incliwhich was officially computed as the length of three grains of bariey taken from the middlo oar and placed end to ondbe arbitrarily lengthened by a mere one-thousandth part in order to obtain a truly scientific. earth-commensutable unit exactly one fifty-millionth pan of the polar axis of the earth.

Search inside

Filty such inches, said Herschel. would make a yard that was exactly one ten-millionth of the polar axis, and half that messure, or 25 inchos, would make a very useful cubit.

By coincidence these were the cubit and the inch which Taytor had found to fit the Great Pyramid In multiples of 366 .

Another unexpected piece of evidence astounded Taylor. Ho discoverod that rocont maps producod by the British Ordnance, the largest and most expensive yet undertaken. had been done on a scale of $1: 2500$. This scale furned out to bear no relation to the standard British mite of 5280 teet, which had varied through the ages, but almost miraculously fitted the "sacred" cubit as postulated by Newton, as well as the British acre, one side of which was equal to 100 cubils of 25 Inches. It appeared that the British Inch must have been an ancient unit of measure which had lost a thousandth patt as it was handed down from generation to generation. \dagger

To Taylor the inference wes clear: the ancient Egyptians must have had a system of measurements based on the true spherical dimensions of the planet, which used a unit which was within a thousandth pert of being equal to a British inch. Fired by what he considered a stunning discovery. Taylor launched into a monumental study of the cubits. feet. spans, inches and stadia, not only of the ancient Egyptians, but of the Babylonians, Hobrews, Groeks and Romans. He found that all kinds of cubits had been used in the past some of which appeared to have mathematical relations to ach other. He also analyzed the anclent measures of cubic capacity along with the modern gallons, firkins, kilderkins,

That thls figuring wos not arbitrary was confirmod by the Iniemational Geophysical Year 1957-58 geodetic research with orb ting valicies, which obtained a lioure of 3949.89 miles for the dolat radius of the earth. Divided by 10.000 .000 Britlsh Inctres, this glves 25.02614284 , of the fength of Taylor's and Nowton's "sacred
cubit" correct to the third point of decimal. † Corrobolative evidence for Taylor's conclusion was recentiy produced by Algemon E. Berriman In hils Historical Metrology, published by E. P Dutton in New York in 1953. "The English acre,"
writos Boriman, who is an enginoor and an orchitect, "is the mosi intriguing of ancient measures because it is virlually equal to a hypollietical peodatic acre delined as one myriad-millionth of the square on the terresirial radus." Bernman noted that the geodetic cre could also be defined as measuring one myriad square cublis of a hypotheticel cubit equal to one ten-millionth of the terrestrial adiua Berfimen gave a velue to this cubil of 25.064 inchee, saying denved from the sexagesimal division of the Eart's circumterence.' Bernman also noted that the sightly larger Scoltistl and Irisil acres are related to each ether and to tha basic English acre as a square to an inscribed circlo.
hogsneads, butts, darrels, gills, pecks, tagots, and chat drons-all in the hope of finding an ancient unit of measure that could be used as a standard, and from which others could have been derived or corrupled.
Puisulng Jomard's theory that the King's Chamber and is sarcophagus might have been designed not so much as a tomb as to monumentalize a system of woights and measurc, Taylor was amazed to find thet the cubic cepecity of the granite coffer was almost precisely four limes what he British farmer still used as a standard measure for grain: he guarter, or eight bushels.

From all his studies, Taylor concluded that the proporions of the Pyramid had definitely been inlended to incorporate geometric and astronomical laws simply and easily expressed, and that its purpose had been to preserve and pass on thls knowledge to future generations
However, as thoro wae nothing in Taylor's philosophy o Indicate the existence in such remole antiquity of any civilization which could have had a knowledge of the true shape of the planet, ils actual size, and its motion in the solar sysiem; and as tho conceit was not then current that this planet might havo been visited by superior beings from some other pert of the universe. Taylor was hard put to explain the sources of sclence he found incorporated in the Pyramid More than a scholar and a mathematician, Taylor was also a profoundly rellglous man, thoroughly steeped in the Old Tostement which he believed to be literally true. To Taylor the creation of Adam had occurred in 4000 B.C. and the Flood in 2400 B.C. It seemed to him hard to believe that in a mers 300 years man could have redeveloped to the point of building so complex a structure as the Great Pytamid. Taylor could come to but one conclusion: whoever ad buil the Pyramid must have done so under the direct iniluence of Dlvine Revelation as Noah had buill the Ark. in his own words: "ll is probable that to some human beings the carliest ages of society, a degree of intellectual power was given by the Creator, which ralsed them far above the tevel of those succeeding inhabltants of the earth
faylor even ventured the hypohesis that tho buildors of the Pyramid were of "the chosen race in the line of, hough preceding Abraham; so early indeed as to be closer to Noah than to Abraham."

Because of the close similarity of the British inch to the "Pyramid inch," his idea was to give impetus to the theory that the British were related to the Lost Tribes of lsreel "which during thelr captlulty and wanderings pre served a knowledge of the wisdom of the Egyptians."

As might have been expected, Tayior, who had beon
known as a benign and digntfied old gentteman, had a hard time convincing his quiet Victorian contemporaties o such wild and rovolutionary theories, espeoially as they such wild and rovolutionary theories, espeoialty as they descent of man.

A paper on the Pyramid which he presented to the prestigious Royal Sociely was rejected with the suggestion that such a paper might be moro appropriato for tho Sa ciety of Antiquarians.

Growing older and more infirm. Taylor was afraid he would die withoul developing any audience for his ineorles which by 1859 he had formulated into a volume entitied The Great Pyramid: Why Was II Built \& Who Buill II?

Nearing his death, he had the luck to find the support of an eminent academician with the reputation of having an excellent and sober mathematical mind: Protessor Charles Piazzi Smyth, the Astronomer Royal of Scolland.

VIII. FIRST CONFIRMATION OF SCIENTIFIC THEORIIES

Piazzi Smylh, who was born in Naples 10 Admirat William Henry Smyth (and named for his godiather, the renowned Sicilian astronomer, Father Giuseppe Piazzi, discoveror of tho first known asteroid), was enough of a mathematician not to mock al Taylor's reasoning. Carefully studying Taylor's Igures. Plazzl Smyith decided to support them with a paper which he presented to the Royal Scciety of Edinburgh, of which he had become a membor because of hie important eontribution to the new seionce of spectroscopy.

It was Smyth's conclusion that the sacred cubll used by the builders of the Gieat Pyramid was the same length (25.025 British inches) as the one used by Moses to construct tho tabornacle and by Noah when he buill his Ark, and tho tabornacle and by Noah whent he built his Ark, and thousandth part of being the same as a British inch. Smyin also concluded that the Brilish had inherited this "sacred" inch down through the ages."
Smyth's follow academicions treated him no better than hey had treated Taylor.

Ouring the lasl few weeks of Taylor's ilte, there was an animated correspondence between Smyth and Taylor. When Taylor died in 1864 Piazzi Smyth decided that the only way delinitely 10 confirm or refute Taylor's theories about the relation, and the Pyramid cubit, would be to go to Egypt and carefully measure the Pyramid
in "utmost straits for funds." Smyth asked his fellows of the Royal Society in London for help; though the Society

- Allributing to Newton the ariginal discotery of the presence of the sacred cubls in the Pyiamid Smyin wrote: "Row thankiul should we be that it pleased God to raise up the spint of Namult amongst us: is riper ycara-though the ofpoastion of the Church of England has caused it to remain unread almost to the present day-that while there undoublediy was in ancient times a eubil of 20.7 inches nearly . . . and which Nemion calls "the profane cubtr" inere was mother which he equally unhestiatingly speaks of as the sacred subil, decidodiy longer."

Search inside

C. Plazzi Smylh, Astronomer C. Plazzi Smylh, A
Royal for Scotland.
was "in receipt of a largo annual grant from the government for the assistance of precisely such special efforts in sclence, it not only gave nothing to my seml-pauperized expedition, but actually sent back part of that year's grant to the government on the plea that there was nothing going on that noedod it.'

That same December, Plazzl Smyth and his wife-then in thelr early forles-set sall for Egyp! wilh a vast number of boxes containing scientific instruments more accurate than any yet taken to the Pyramid, and with stores and equipment enough for scverel months.
Despite a serles of mishaps, and the almost ruinous expense of everytining in Egypt-which was in the midst of a cotton boom engendered by the American Civil War-the Smythe ovontually arrived in Cairo, where they were obliged o hang around walting for permits and local supplies. In hisdiary Smyth morosely entered exotic descripllons of "the abominations of the worst city in the worla," where the lood roeked of garlic, lard and Alrican macaronl, tho alr was fetid from mounds of desiccaled human excrement, where he was Intested wilh flles by day and mosquitoes by night, and woken up by a predawn cacophany of howling cats and dogs which roused the pigs which roused the eese and lurkeys "just before the disk of the sun comes plike a ball of liquid fire."

Polgnantly he described litle girls "dluing between the hird teet of colossal camels to pick up its hideous droppings, pat them Into nicely shaped cakes . . . to make highscented ammonia-filled fuel for the cooks . . . of the resplendent cily."

Smyth was so well recelved by Ismall Pasha (who a ew years later was 10 commission Verdi's opera Aida which opened in Cairo in 1871) that ho triod to buttonholo the viceroy into providing men and funds to remave the great mounds of debris around the base of the Pyramid, to have a -Inch hole carved through the center of Ihe granlte plugs in the Ascending Passage (so as to ascertaln its true meridian), to have tho vontilaling ducls to the King's Chamber leared, and to sink a shaft through the hole in the plt down to the level ol the Nile.

The pasha shook his head, promising to provide twenty men for two weeks to clean and wash the main chambers the Pyramid so that Piazzl Smyth might tako some moa urements. The pasha also kindly agreed to provide the Smyths with donkeys and a camel train to bear them and heir luggage to the Great Pyramid
Leaving, "Yhe purse-proud modern Muslim ally with its ulip-clothed individuals struggling for wealth," the Piozzal

Search inside

Sandstorm In the desert.

Smyths set off for the Pyramid. On the way they stopped to eat buns "from Mrs. Smyth's comm|ssary" and relresh themselves with Nile water "muddy and opaque as milik with suspended clay" but celebrated, says Smyth, for its hoalth-giving qualities, the best cure for "the windy molancholy arising from the shorter ribs."

The pyramids, tinted by the golden rays of the setting sun "embalmed in the intense azure of the western heaven," appoarod to grow no larger as the caravan approached. Only in the immediate vicinity did they suddenly tower so completely as "lo take possession of the mind."
Looking up at the vast stepped sldes toward the "dizzy apex 480 feot above in perpendicular height, the mind slowly and almost painfully bogan to roalizo tho onormous size of the mounteinous buildings."

Descending Passage blocked by Arab guldes below the ovol of the granite plug.

As a place to live within reach of the Pyramid, the Smyths selected an abandoned tomb in the eastern cliff of the Biza hill which had previously been used as a storeroom by Howard-Vyse. It proved to be an agreeable residence: the solid rock wes the best possible protection against the midday heat, and the orientation of the oave protected it from the sandstorms and the clouds of multicolored locusts that otherwise made lite in the desert a misery.

To assist Smyth in his measurements, and to help with the general chores, he found a whiskered Arab called Ali Gabri who had carried baskels for Colonel Howard-Vyse a generatlon earller.

At twilight Protessor and Mrs. Smyth sat on campstoois and watched with amazement as flock after flock of bats llew out of the Pyramid, "for almost twenty minutes without any cessation," to be pounced on by havks or owls.

Several days were wasted white All Gabri impressed a gang of Arabs to clean the chambers of the Great Pyramid, but at last, In lato January, tho day camo for Smyth to enter what he celled "the largest building in the world by the smallest of all doorways."

As Smyth picked his way down the Descending Passage, partly on his seat and partly on hands and knoes, ho was relieved to find that shallow notches had been dug by Howard-Vyse every 2 or 3 seel so as to keep from slipping on the steep incline. However, each step raised a cloud of fine white dust that made it almost impossible to breathe. To his distress, Smyth also found that the passage leeding down to the "pit." which had been cleared by Caviglia, was once more blocked with sand and stones, and barred by a grill just below AI Mamun's hole to the Ascending Passage.

It was explained to Smyth ihat it cost the Arab guides loo much time and candle grease to accompany tourlsts all the way down to the "pit" beforo making tho long climb back up to the King's Chamber, so they had blocked the passage and Informed gullible tourisis lhere was notining but sand beyond the barrior.

Bent on linding prool that the Great Pyramid had been bullt on units ot his "sacred cuble," Smyth had brought from England a 105 -inch metal bar with built-in thormometars al either end to indicate the slightest variation In temperature with which to measure ine avallable passages A mere chango of .01 degroo Fahronhoit was onough to produco a sensible change in the tength of the standard bars.

To obtain the exact angle of the Descending Passage Smyth had a specially designed clinometer equippod with a gunmetal circle 8 inches in diameter, divided into units of

10 seconds, and fitted with threo pairs of verniers. The slope he calculated was the most precise to date: $26^{\circ} 27^{\prime}$

For measuring the individual stones of the floors, walls and cellings, Smyth had manogany and teak rods tipped with brass, carofully painted or waxed to prevent variation from humidity or temperature. One spocial rulor, remarkable for Ils straight, fine grain, had been obtained from an antique musical organ dating from the relgn of Queen Anne. To fashion these measuring instruments. Smyth had cbtained the services of an oxport optician.

Each rod was checked daily for atmospheric shrinkage
"Mirilature" camera 8 "Mrilatute" camera, 8
inches long, uased by Plazzi Smyth bo photograph Plazzi in.

 contaner tor the vicannte
nituele bath
uhich h holo
 which measured an inch
sur syiuar some mo hundiced mitios copop negatives, paccked missinn, bui ta lanalem sidides, ${ }_{2}^{24} 4$ steroutypos neitios ind posses.
 air repiouceed wlit ther permission.
The camara is in the possession of the piesent Astronomer hoyal for Seotiand. Prof. H. A. Brück. and lis here reproduced by klnd pormission.

or enlargement against a basic line-grained cllnkstone which could be measured with a magnlifying glass to $1 / 100$ inch.

Thus began the first really systomatic analysis of the Pyramid with modern measuring equipment. For waeks on ond Smyth measured and remeasured whatever he could reach in the interlor of the Pyramid, counting the siones in passages and chambers, computing angles and declinations.

Measuring the coffer in the King's Chamber. Smyth
concluded thal Taylor had been correct in rocognizing it as a standard of Ilnear and cublc measure. Unlike the European standards, such as the yardstick kept at Whltehall, which vary with temperature and barometric pressure, shrink, decompose, tamish or oxidize with time, the coffer appoarod to be designed to remain at a constant temperature and batometric pressure, lis pollshed sides unallected by decomposition over a period of thousands of years. subject only to the vandallsm of man. \dagger

A clinkstons is a compact grayieh-blue folspalhic rock litto subjoct to atmosphoric changes which makes a clink sound when struck.
t Smyth echood Horsenel's complaint sbout the standard yaid at Whitehalt. Herschol had callod it "a purely individual object, reterance to a natural origin is sturiousiy exciuded, as much as it had dropped from the clouds."
Today our yard is elated to the meter, which is detormined by a linite number of wavelengths per sacond in vacuum of an alcm of rypton 38-moscuied by means of light wavas. A socond is no
ionger defined as the 3600 in patt of an hour but as the duratlon of longer defined as the 3600 ih patt of

Photograph of Mrs. Piazzi Smyith taken by her husband oulside their lomb apartment
in the Giza Hil, which Piazzi in the Giza Ha, which Piazz Smyit characterized as a the green Egyptian plain."

For outside measurements Smyth used a 500 -inch cord, and for elevations he hod theodolites, sextants and telescopes. which were labotiously carted Irom spol to spol up and around the pyramld, to measure all that could be measured, despite the mounds of debris.
With his long and varied experience in observational astronomy, Smyth had brought the requisite apparatus for obtalning astronomical observations with a high degree of precision.
To obtain the correct latitude of the Great Pyramid without having his plumb line diverted from the perpendicular

Photograph of All Gabri (somelimes spelit Alee Dobree) scated outzide tho tomb in
ine east bank of Pyramid Hilt ine east bank of Pyramid Hilt
wherese Piazzi Smyth, whio is handiling tho campora, had his quarters.
by the attraction of the huge bulk of the Pyramid, Smyth mado his obsorvations from the very summit; thore the Pyramid's pull of gravity would be directly downward.

Smyth and his wife spent several rights on the clicumscribed plattorm. close to the stars, along with Ali Gabri, who complained he could not sleep because of indigostion. Smyth described the first night as cerio but wonderful, with the ghosllike summit of Kephren's pyramld lusking in the misty darkness. At daybreak he saw 'a broad pintoned eagle floaiting serenely along looking downwards on other things, as we were looking down on him."

Search inside

From the vantago of tho summit Smyth figured tho latitude the Pyramid to be $29^{\circ} 58^{\prime} 51^{\prime \prime}$. From this he concluded that the designers might have purposely not placed the Pyramid direclly on the ininiteth paraliel because of the atmospheric refraction, which would have caused an error in their abservations of about that much. Later he altributed the displacement to a gradual shifting of lalitude, registered at Greenwich as $1.38^{\prime \prime}$ per century.
As for the extraordinarily precise orientation of the Pyramid - which Smyth found to be lar superior to that of the world-renowinod obsorvatory of the sixteenth-century Danish astronomer Tycho Brahe一the Scoltish astronomer concluded thal for such refinement a merldian must have been obtalned by observing a polar star along the Descending Passage.
When Caviglia had cloarod this passage of the rubble loft AI Mamun, he noticed one night that the North Star vias observable in the small patch of sky-about 1° square-of the opening. Intrigued by this phenomenon, Howard-Vyse had asked Sir John Herschel whether the direction of the passage could have been determined by the polestar. Herschel replled that 4000 years earller Ursa Minor could not have been seen from the passage at any time throughout the wenty-four hours. He added, however, that alpha Draconis, the leading star in the constellation of Drago, would havo een near the pole and that though a comparatively been near the polo, asd that the a colure it could insignilicant star of less than the inird magnilude. it could evertheless have been cleariy seen by an observer al he bottom of the passage at the moment of its inferior
culmination, when its circumpolar orbit was at its lowest.
Smyth proceeded to subtract the $26^{\circ} 17^{\prime}$ angle he had
Smyth proceeded to subtract the $26^{\circ} 17^{\prime}$ angle he had
ound tor the Descending Passage from the Pyramid's latlude tound tor the Descending Passage from the Pyramid's latluc
of 30° (or helght of a true North Star above the horizon as 0130° (or helght of a true North Star above the horizon as soon from 30° of latitude) and obtained an angle of $3^{\circ} 43^{\circ}$. Calculating that alpha Draconis would have been $3^{\circ} 43^{\prime}$ from he pole at its lower culmination in 2123 B.C. and again in 3440 B.C. Smyth concluded that either date might be taken as the one when tho Great Pyramid had been laid out.

- Ollier pyramid experts have atributed the slight displacament to the fact that the Pyramid reeded the solld basis of the Giza plateau for o foundallon, and could not have been buill any larther north, n the sofl sand of the Nlie valioy. The estronomer Rlchard A. pioctor suggests that the emptacement was the resull of the mean atluce oblained from observing sun shadows and star elevations. which ate aftected in ooposite directions by the atmosphenc olfactior. An interesting explanation was produced by Dr. Everel tho doviotion of the Pyramid's latitude trom 30° is neither an crio in instrumontation, nor in polar axis, or latifude, tut compensoles lor the spheroidal shape of the eartin as poslulated by Nowlon.

This photograph was taken by Piszzi Smylh and sold at auction atter his death. I Shows Nirs. Smyth silung on
the odge of what Smyth colls Shatra's burnat chamber notiln of the Greal Sphinx. It was taken at high noon 10 show that the lomb was correctily
orianted along the meridian orianted along the maridians so
that with the sun 31 its zenith. no laght would fall on eithor the east or the nest wall
ro ascertabs ing correct mement for noon Plazzi 3myth spent the prevlous night ob serving the
tefescops. Plazzi Sm
the Great Py phologrophod samo scientifle with the with which he measured it with which he measured despite the orracultes of doverghing his own chemicals, and used a special $1-$ Inch plate "as shath as an ordinary microscopic slido,"
wnich gave results that could be blown up with almosl the datail of the larger pholoorsonic plate. To fioht the interiors of tle Pyramid he
usod magnoslum flaroz, ex usodmagnoslum liaroz, o amounts so as to obtain the best exposure snd tho cleares delatl. He had to walt hou
belween exposures in th King's Chamber, which fillad up wilh smpke fiom each magnesium flore
Smyth also achieved some remarkable stereoscopic e lects by shooling with two cameras. and Is responsible lor the innovation of olacing his comeras much larthor Inclies.
For lack of funds Smytti was unatle to publish some four score photographs thus ot
talned at the areat p The positlis Great Pyramid. made were lent to which he made were lent to scientllle exhibitions or donated to milcology. and oraduatybecome loat, with the excep fion of itls rathor poot reproauction.

In support of the later dato Smyth worked out that if the oundation of the Pyramid had occurred at midnight of the equinox in 2170 B.C., when aloha Draconis was al meridian below the pole, another very Imporiant star would have been crossing the meridian above the pole: n-Tauri, or Alcyone, of the Ploiados, in other words, when alpha Draconis was visible down the Descending Passage, the chief star of the Plelades, n-Taurl, would have been crossing the meridian in the vertical plane of the Grand Gallery. at the moment of the autumn equinox.

Piazzl Smyth's ground pian of tie clitcles of the heavens above the Great Pyramid, at
the opoch when he bolleved it was founded: midnight of the alumal equinoxiont of the autumnal equinox 2170
Smyth noted that alpha Draconis was on the meridian below the pole while the Ploiados uere on the meridian aoove the pole. cotricidantes

Casinc stones donated by Smyth to the Edinburgh Smyth io the Edinburgh
Mureum, showing the angt of the sloph of the Great Pyramic

Smyth considered this a very important date in history. as many ancient peoples dated the beginning of their year at Halloween, when the Pleiades and the equinoctial point were on the merldian together at mlanight.

But Smyth's prime preoccupation was stlil with establishing whether Taylor's n proportion was really incorporated in the structure.

Atong the face of the Pytamid. Smyth checked the angle of the casing stones discovered by Howard-Vyse. Unforunately tho sharp lines had already boen almost obliterated by the Arabs and by the chipping away of souvenir hunters. But searching through the debris piled high round the base. Smyth was able to find fragments of casing stones with the angles still intact.

Invariably the angle checked out at about 52°, or its complement of 128°, confirming Taylor's theory that the height ol the Pyramid was designed to be in relallon to the perimeter of its base as the radius of a circle is to its ircumterence.

To see if he could refline this anglo. Smyth observed the sithouette of oll the backing stones against the sky by means of a very accurate altitude azimuth circle which had been donated to nis triend and mentor Proiessor Lyon Playfalr by his students in 1806 and in turn fent to Smyth.

By this method Smyth obtainod an anglo of $51^{\circ} 49$ Meanwhile Sir John Herschel had obtained a figure of $51^{\circ} 5215.5^{\prime \prime}$ from the dimenslons of the casing stones as reported by Howard-Vyse. Smyth chose to take the mean of these available measures as $51^{\circ} 51^{\prime} 14.3^{\prime \prime}$-a difference of less than a minute from aither figure. He also chose to tako the mean of the 763.62 -fool base line meosured by the

Magnosium-light photography
had been developed only a lew monvis betore plazzi Smyth look this doublo ex posure of the coftiar in th King's Chamber. The ab parant teflectiors are those
of Ali Gabri and another Arab. Mis. Smyith's head appears beyond the colifer. Smyth's mothod of burning magnosium was an innovation in photography.

French and the 764 leet measured by Howard-Vyse, and got
 feet
This was an arbitrary act, but the result produced an astounding value for $1 r$ in the Great Pyramid proportions of $3.14159+$.

Searching for a reason for the incorporation in the Pyramid of this relation of the radius of a circle to its circumference, Smyth pursued Taylor's theory of the base being divided into 366 units to coincide with the number of days in the year.

To have been absolutely precise, the perimeter should have measured 365.24 .2 Pyramid inches. This would require that each side be 9140.18 British inches. The measure obtained by Howard-Vyse and the French savanis. though whthin 6 inches of each other, were both about? feet too long

The only solution appearod to be to dig up the sockets and remeasure the base line more accurately; but time and money were running short. Forlunately two engineers from Glasgow, Messrs, Inglis and Alton, happened 10 pass through Egypt on their way from a tour of the Holy Land. Cajoled by their follow Scot, they agreed to help him uncover the sockels originally found by the French (which had once more become covered with debris in the intervening half century) and make a truly accurate survey

Following Smyth's complex computations, the ongineors were ablo to uncover not only the sockets but a periectly leveled stretch of pavement at the perimeter of the base.

Stereographic phom taken by Plazzi Smyth of 1 Ar. Inglis
and Arab workers in the northeast socket eleared ADrll of 1885. The Roval En. gineer surveyor went ell over the floor of the socket with a spint level and tound is
absolutely lovel.

To measure the distance between the sockets, up and around the debris, required a great deal of digging and moving of rocks. But Smyth could not tarry. His own instiuments were already packed and his passage had been booked by the British consul. When the engineers promised to take great care in their measurements and forward the results to Scotland, Smyth disconsolately agreed to depart as scheduled.

All that remained to be done was to dispense the customary baksheesh to the neighboring Arabs who had helped during four months' stay. The Smyths gave each man a gold sovereign plus a present depending on the willingness with which he had served his Scottish employers: the best with which he had served his Scottish employers. Ine trest pans; and the worst got mousetraps
Whon the anciont Arab who guarded their cave by night appeared for his just reward, Piazzi Smyth puritanically noted that the old man "seized on the money with such an agony of clutch. and his eyes brightened with so strange a fire, that alas for perverted human nature! we teared we had done more harm to his soul than good to his body.

As the camel train was prepared for departuro, the faithful Ali Gabri stood silent for a lime, "then suddenly putting his fingers to mis eyes" rushed into the desert to conceal his crying.

Back in Scolland, Piazzi Smyth received the results of tho enginecrs' survey; these gave a much shorter length of 9110 inches for a side of the Pyramid. Smyth concluded that the true length must be the mean between this floure and the

Ionger one of 9168 inches obtained by Howard-Vyse, or 9140 inches, which was just 1 inch less than was required for Smyth's theory, rosulting in a year of 365.2 days instead of the precise 36524 required by theory.

A great deal now hung on the exactness of these figures. ismyih's theory could be proved correct, It coutd mean that the ancient Egyplians had produced a structure whose basic unit, the Pyramid Inch, incorporated not only a system for linear measurement-with the cubit and the inch--bul also for temporal measurement, with a year of 365.24 days, both based on the mosi sensible soundation: the polar axis of the planol around which it rolatos onco in a day.

In Smyth's opinion "the linear measure of the base of this colossal monument, viewed in the light of the philosoptrical connexion between time and space, has yielded a standard measure of length which is more admirably and learnedly earth-commensurable than anything which has over yot entered into the mind of man lo conceive.

Smyth summed up his work: the Pyramid "revealed a most surprisingly accurate knowledge of high astronomical and geographical physics . . . nearly 1500 years carlier than the exiremely infantine beginning of such things among the ancient Greeks."

From the Royal Soclety of Edinburgh, Smyth recelved a gold medal tor the caretul measurements he had taken in Egypt; those ho published in monographs, and in a
three-volume opus running to 1600 pages entilled Lite and Work at the Great Pyramid of Jeezeh during the Months of January, Fobruary, March and Aprll, A.D. 1865.

The work was not well recelved. As much ol a rellgious zealot as had been his predecessor Taylor, Smyin was unable to account for the mathematics displayed by the ancient Egyptians. Like Taylor he was obliged to attribute this soionce to Divine Wisdom, somehow imparted to an earthly architect who had constructed the Pyramid under the direct influence of revelation. "The Bible," sald Smyin, "tells us that In very early historic days, wisdom, and metrical instructions for buildings, were occasionally imparled perlect and complete, for some special and unknown purpose, to chosen men, by the Aulhor of all wisdom."

The ldea was recelved by some with derision, by others with acrimonious opposition. One reviewer remarkod that Smylt's book conlainod "more extraordinary hallucinations than had appeared in any other three vol umes published during the past or present centuiy." A frlendly reviewer summed up reacllorl to the book saying "it evoked numerous lilustrations of envy, natred, malice, and much uncharitablences from vain, filppanl, and unquall ied writers, the aulhor being scoffed at, Iraduced, worrled and all bul argued with. by opponents who only succeeded in proving their egotistic Inefficlency to apprehend the truth."

To make things worse another Scot, a religious enthusiast called Robert Menzics, advanced the theory that the passage system in the Great Pyramld was nothing less than a chronological representation of prophecy, corroborating the Bible, built on a scale of one pyramid inch to the sotar year.

As Menzios' theory was formulated before anything was known of ancient Egyptian messianic prophecy, such as The Book of the Dead, the lexts of which had not yet been deciphered, this new contribution merely added to Smyth's problems. Smyth was further derided and lampooned by his

- Menzies knowing that Smyih had made an approximato calcutation Ot the date at which alpha Draconis shone exacty down the Descending Passage. put forward the theory that the date of this importent astrononical phenomenon stiould be clearly merked some way in the Descending Passogo hlseli, et the place representing the said date on the chronological seaia. To Monzies' delight, Smylh passage at the very spot indicated Although the joinls in the walls of the Descending passisge weie perpendicular to the tioor, said Smyth, there nere two oints on each wall, unmediately to the north of the scored lines, that were net so: these were pecutiarty vertical joinls, as if intended to draw attontion to something of importaree: in Smytn's and IMenzles' opinion, evidantly tha scored lines.

Search inside
fellow acadomicians. Sir James Y. Simpson, an eminent member of the Royal Society ol Edinburgh, publiely ridiculed Smyth before his fellow members, saying, "Ihe whole of Protessor Smyth's theory about the Great Pyramid ts a series of strange hallucinations, which only a few weak women believe, and perhaps a low womonly mon, but no moro." Simpson added that he hed "talked about it to a great many engineers, mathemalicians, and others, and found them scoffing at ane despising it
Smyth's mixing of religious and prophetic conciusions with sound scientific discoveries caused his entire theory to be discarded by skeptics. To this day, the lampooning persisls. One modern writer on pyramldology still refers to Smyth as the world's "pyramidiot." and taments that "such first-class mathematical brain should have wasted its energies in so unprofitable a field."

But Piazzi Smyth was far from being quashed. He ontinued to produce even more fanlastic theorles from the results of his measurements of the Pyramid. Recompuling the hoight of tho Pyramid, Smyth found it to bo about 6 inches onger than Taylor's figure of 5813 inches from base rock to apex. The new measurement revealed that the Pyramid rose from its base in a proportion of $10: 9$, that $i s$, tor every 10 units of height, the Pyramid extended 9 units in width. To Smyth this was an indication thal the proportions were intended to symbolize in yet another way the earth's crouir cound the sun Multiplying the heigh by 10°, he ircuired ran blained astor shes, the newor was 91,8,0.000-or a vory geod ligure for tho mean adius ofthe earih's orbit round he sun, the present figur varies between 91 and 92 million milies. Was this mere colncidence? The argument between the supporters of Smyth's theories and the entrenched academiclans who opposed them became intensely heated.

Basic to the whole argume niwas the fact that no one had a series of absolutely reliable measutements for the exterior of the building, especially beneath its debris where the base ine must actually be measured. Even a new survey by the Ordnance surveyors made in 1869, which gave a length of 9130 inches. was made on the basis of cumulative measurements up and down and around the plles of debris that still coesed part of the base of the Pyramid tetween the xposed sor Result which variod by oven 3 or 4 inchos exposed could not be considered accurate enough to prove or disprove the ineories of Taylor and Smy. So long as the actual dimensions of or Pyramid, boh interior and exterior wore not obtained, correct to a fraction of an inch, there would be no real way of knowing if Smyth had a point or not.

VIIII. FIRSTI
 REFUTTATION OF SCIIENTIFIC THEORIIES

To resolve the problem of the dimensions of the Pyramid once and for all, a mechanleal engincer by the name of William Petrie. who had become fascinated by the theories of bolh Taytor and Smyth, set about designing and construciling oven more specialized sextanls, theodolites, and verniers with which to tackle tho tochnical probloms encountorod by Smyth. It was no casy job. Smyth had gone e long way in perfecting his own equlpment, and It was to take William Petrie all of twenty years to accomplish the task to his own satisfaction. Petrie strossod the importance of further exploration of the Pyramid because of its "paleologic, chronologic, metrologic. geodetic, geologic and astronomic Interest to mankind," and above all "ior lis symbolic Interest relating to the higher ideas intentionally embodied therein by its originator." Yot Petrle kept tinkering with the new instruments and postponing his departure for Egypl.

His young son. Willam Flinders Petrie, perhaps because of a spirit of adventure inherited from his matemal grandfather, tho groat explorer Matthow Flinders, became so impationt he finally decided to prime the pump by leaving ahead of his ather, convinced that his father would quickly follow

Fasclnated by the varled standards of measure used in different parts of the world, young Petrie had read all he could on the subject: instead of going to school, he tramped around England, becoming proflcient as a suiveyor by measuring churches, bulldings and ancient megallthic ruins such as Stonehenge, aboul which he was to write the tirst of his soveral scoro books.

At the age of thirteen, young Petrie had read Plozzi Smyth's Our Inheillance in the Great Pyramid. It had not only revived in him the ideas ot Greaves and Burattint, but convinced him that a real history of measures might be deduced from a careful measurement of surviving monuments and objecls. He was also determined to prove, one way or another, whether or not Taylor and Smyth had been correc in their theories regarding the Pyramid. To do so he would have to resurvey and measuro tho entiro building.

On a stormy day in November of 1880 , Flinders Petile now a bearded professional surveyor ol twenty-slx, set of now a bearded protessional surveyor ol iwenty-six, set off raro instruments designed by his father to eliminate the defects revealed by Smyth's experience. He also had with him the necessary supplles with which to survive for a long pertod in the inhuspliable, bandit-Intested desell. The gate blew so hard Petrie slept on the engine grating, 100 seasick to go below deck. Within a week of landing at Alexandria, Petric had transported his equipment 10 Cairo, whero ho managed to get hold of Ali Gabri to help transport his food and instruments to the Giza plateau.

Ali Gabri was now a veteran of 40 years' service with Caviglia, Howard-Vyse and Piazzi Smyth. Reaching the Pyramid in December, Petric followed the established practice of settling up house In an abandoned tomb.

All heiped Petrie furnish his quarters with shelves and a hammock, helped him slock the larder with shlp's niscuits.

Search inside

Petrle standing belore tils Wing querlers in a tomb on
cantied soups, taploca and chocolate. To cook his evening meal Petrie nad brouglit along a kerosene stove. Like ills predecessors, Petrie found the solid rock of the tomb an extremely hospitable home, remarking that it seemed "as ood as a fire in cold weather, and deliciously cool in the heal."

Petrie's day starled with the lighling of his kerosene stove and the ritual boiling of toa wator whilo he onjoyed a makeshift bath.

Breakfast was the time he accorded to reception. Men and women would took in at the door of his tomb. and it a pocial Arab friend paid a visit, Petrie would brew some coffee in his honot on the little stove by the door.

Pelrie gol along well with the Arats, noting that "the smaltest entering Into thelı ways pleases them enormously: only sit squal, refurn the proper replies to salutations, catch heir tricks of manner, and imitato their voico, and they will laugh heartily and treat you as a friend."
Petrie's ilrst preoccupatlon was to accomplish what had Petrie's IIrst preoccupation was to accomplish what had
been beyond the means of Smyth: a very precise triangutation been beyond the means of Smyth: a very precise triangulation
all over the hill of Giza, including points around all three large pyramids, as well as the surrounding temples and walls which belonged to the complex. Though he couldn'I remove he rubble. Perrie hoped to establish the dimenslons of the pyramios by triangulation to within a traction of an inch.

Petile acompilsticd his tr
angulation of the Greas Pyramld over a perilod or moniths, by means of s ton-:inch Fiench thecdolite. "a spiendia theodolile by Gambay" with a
$\times 35$ telescope. Some of the anoles wire read as many as 14 timos from as many as 50 Hxed stations Petric estimated
the probabie erior in is base measuremont of the Pyramid meazuremont of the Pyramid
to be $\pm .03$ inch ol $1 / 260.000$ of the whole. But because of comerstones were missing. Petrie could nol establish. where the original corners had actually been placed.

Using a highly accurate theodolite by means of which隹 seconds of angle could be read Pelrie repeated his servations so many IImes thal it would takehim from dawn lil il sunsel a single station. A II is commonly referred to as te anglo subiended by aime at the distance of a mile.
All the while All Gabil held a huge parasol over the theodollte to keep the sun from shining on the maral clicte and expanding it uneventy. Once the sun had gone down Petrie would have a solitary meal, washing his own dishesbecause he distrusted the Arab's idea of cleanliness-and hen sit down to meticulously wile up his figures, laying the groundwork for that scientific archeology of which he was to become the prime promoter His sole entertainment was the "indescribable" tunos playod on a rood flute by Ali Gabri's nephew, whose job was to guard him from a neighboring tomb through the night.

Choosing good days, with cool alr but no wind, and working for ten hours at a streteh without food, Petrie was ablo to get a figure to within a quarter of an Inch, and usually to withina tenth of an inch, lor the actual layout of the three arge oyramids at Glza. He was amazed to find the layout of the Great Pyramid "a triumph of skill. Its errors, both in length and in angles, could be covered by placing one's humb on thom.'
(1)

Search inside

Victorion tourist and hor ascorl beino helped up the Pyramid courses by Arab guides.

of science had been made clear by Piazzi Smyth, who described "many end mulltudinous scenes of lurid-lighted evelry, indulged in by many smoking. tobacco-stinking entlemen and a few ladies, from some vulgar steamer' who performed 'whlriling dances over King Cheops' tombstone with ignorant cursing of his anciont name . . . and the painful thunder of the coffer being banged, to close upon breaking, with a big stone swung by their Arab helps."

For lack of salacious statues or pictorial attractions at the Pyramid, the more boisterous touris's would amuse hemselves by removing loose blocks from the summit which hoy would send crashing down to the already vast heaps of rubble accumulated round the base.

At the end of the day, once the tourists had left, Petrie would work in the intonse accumulated heat of the Pyramid, oflon till midnight and sometimes right through till morning, ike "the Japanese carpenter who had nothing on but a pair foectacles, except that I do not need the spectacles." The entilating shatts in the King's Chamber, which had been opened by Howard-Vyse, had once more been clogged by vandals, making the air unwholesome. After the first few hours the dust which was raised at every move caused Petrie feverish headaches; but he persevered in his lask.
with steel tapes and spocial chains 1200 inches long, as well as self-compensating accessory appliances, Peirie sel about measuring with a far finer accuracy than Smyth could obtain all that was worth noting. Most of Petrie's instruments llowed him to measure to within $1 / 100$ inch, and some, for eally careful work, enabled him to do so to within $1 / 1000$ inch.
To measure upilght surfaces he used plumb lines; for horizontal surlaces a leveling instrument. Thus he could find he dimensions of a room at any level, and cstablish where any faulta might lie.

To measute the straigitiness of the sldes of the Descending Passage Petrie used fine observations of Polaris at elongation-when it was farthest oast and west from the pole. He was amazed to find that the average error in the part buill of masonry was an Infinitesimal $1 / 50$ inch in 150 reet; and over the enlife length of 350 feet the sidies were within $1 / 4$ inch of being absolutely straight.

In the King's Chamber, Petrio established to his satisfaction hat the walls had been constructed on the basis of the same r proportion which ruled the exterlor of the bullding. Its length was to the circuit of its side watl as 1 is to π.

This value was not immediately evident, because tho lloor ot the chamber had been insortod between the walls so as to cut off a fraction at tho bottom. But the cut was cunning in

Search inside

President Ulysses S. Grant visited the pyramid as pan o a world tour.
in the archives of the Library of Cungress lies a faded
doguerroolypo, with tho unmistokathe teatures ot the genoral.
Piezzi Smyth doseribos tho arrival os a party of onthuslastic Yankee tourises alop the Great Pyramid while Smyth was making eariymoming obscrvations. "In the
shoit time they were there"" wriles Smyth, the Americans "arrianged themselves into a meefting on constitutional princlgeles of Ango. Saxar
derivation, with a chaiman, derivation, with a cesairman, whereln a resoluturn was proposed. reccrded and
cartied unanimousty, to the cartect-that whereas this here
effer pile whips evorything in the way of building we've seen alt our grand four thsough The usedup, wom-out world,
yet wo calculate King Cheops yer wolider, must have been such a horrid old tyrant and cruel opprassor ol ite people. us free and independent zens ol the Unyted Statas thal we wor't give hima a cheer Aftor offering thanks to thair "excelliont chairman for h werberlariced conduct and
impartial atlilude on his very elevated seat" says piazzi Smyth, "the gentilemen liquon:ed up, tho ledics, as the sented to take a swallow, and the whole party disappearod coun the steep slope of the pyramid sit every man od Hlags picked out on the soles of their bools, so that they might hove pleasure in of the Soulh wherever they of the
went."
As an incication of how lutlo il miondo e paesse. Cheops
is said lby Sir Gardiner Wilkinis said (by Sir Gardaner Wilk
son) to have engraved the figures of the Gods ol Egypt on the publie roads "in order Thal they might be licdoen
under foot by man and beast."
that It thus incorporated in the chamber both the $2-\sqrt{5}-3$ and the 3-4-5 Pythagorean triangles.
Checking to see if the π proportion could also apply 10 the colter, Petrie found that its dimensions appeared to be all multiples of a square fifth of a cubit. The difference between the requirements of the theory and the actual squares being a mere $1 / 1500$.

All of this tended to corroborate Smyth's theory that the builders of the Pyramid had been possessed of an advanced science of mathematics. But Petrie also found in the Pyramid an extraordinasy mixture of brilifiant workmanship and astonishing clumsiness. He was amazed to find that the granile in the antechamber had never been dressed: many of the stones had been left unfinished and somo wore ovon defective. From such indications Petrie concluded that "the original architect, a true master of accuracy and fine methods. must have ceased to supertntend the work when II was but halt done"

From a caroful scrutiny of the coffer in the King's Chamber. Pelrie established that the ancients had used saws with 9 -fool blades, their teath made of hard jewels, to cut the sides of the colfer out of a single solid block To hollow it sides of ihe colfer out of a single solid block, To hollow it
out they had usod drills with fixed cutting points also made of hard iewels, probably diamond or corundum

Petrie estimated that in otder to cut inrough the hard granlle a pressure of 2 tons would have had to be placed on the drill. How this could be done was a mystery to Petrie, who concluded: "Truth to tell, modern drill cores cannot hold a candle to the Egyptians . . . Their fine work shows the marks of such tools as we have only now reinvented."

With such lools the ancient Egyptians were somehow able to cut sharp hieroglyphs into incrodibly hard diorito, and also to turn stone bowls to paper-thin surfaces.

To measure the bottom of the coffer and to see if there were any secret opening beneath It. Petrie had Its 3 tons raised about 8 inches. but found no sign ot any opening. raised about 8 inches, but found no sign of any opening.
When raised and struck, the coffer produced a deop bell-like sound of extraordinary, cerie beauty.

Outside the bullding Petrie searched for more casing stones still in their orlginal position such as had been

- Potrie also noted that the squares of the dimensions of the King's Cliambor, Quoon's Chambor, antochamber and sublarranoan chamber were all evan numbors of eubits. nearly all multiples of ten rom inis tholicued nat the squares or me diagonais were likewise miliples on to sied en hundred

The casing stones of the Great Pytamld (100king east). showing the platform on which they rest. the pavement in front. and the laveled natural
uncovered by Howard-Vyse at the base of the Pyramid. It was a painstaking and dangerous job to dlg down through holes dug by the Arabs, and at one point Petrio nearly was killed.

Eventually he did manage to uncover more casing stones, as well as the base of the Pyramid. Petrie found the workmanship on the original casing stones. some of which weighed over 15 tons, quite as remarkable as Howard-Vyse had described t. The faces viese so stralght and so truly square that when the stones had been placed together the tilm of mortar lett between them was on the average no thicker than a man's nail, or $1 / 50$ inch over an area of 35 square leet.

Petrle found that the mean varlation of the casinos from a straight line and a tive square was but $1 / 100$ ineh on a length of 75 inches. This staggering accuracy was equivalent to the most modem optician's straight edges.

As Petrie remarked, "Merely to place such stones in exact contact would be careful work. but to do so with cement in the foint seems aimosi impossible: it is to be compared to tho finest opticians' work on a scale of acres.' So fine was the texiure of the cement that after millennia of exposure to the elements, the stones shattered betore the cement would yield.

\pm

Shallow socikets dug into the Sok at the corners of the hold the lour cornerstones for the base, and were apparently cut thrcugh the pavement al hese ponts. This has engencered an asgument among yramidologisis as to wheth measured lrom the edge of the pavement or the edge
bottom of the sockets. It was at first assumed that the bollom of the Pyremid cormerstonbs had heen fitted nlo these sockels 50 as 10
countarbalanco any ovontuol counust nroduced by sliting way from the cenler of the strueturo, but modorn archotogists discount the assump-
lion because at the northeast on because at the northeast is viruatiy zero: and the outer dge of the soulhwest socke meraly an incised line in ent than lor structural supporl.

But the prinaipal result of Petric's survey was to prove a little absiruse. He considered the Irue base lengith of the Pyramid to be defined not by the limit of the sockets a measured by Smyth, but by the edge of the pavement 20 inches higher.

According to Perrie's measurements. the base of the Pyramid at the pavement was shoner than the distance between the outer corners of the sockets, as estimated by Smyth. Instead of measuring the 9440 Brilish Inches claimed by the Scoltish astronomer, Petrie obtained a length of onty 9069 inches for the base line.

Discarding Piazzi Smyth's theory that the Pyramid had been designed on an extra-long pyramidel cubil of 25.025 inches, Petrie showed by his own carelul measurements that the builders of the Pyramid had used the royal cublt of 20.63 inches in order to produce a base line of $\triangle \Delta 0$ cubits and a height of 280 cubits. This contirmed Taylor's :hoory to the extent that the Pyromid was intended to symbolize the globe by giving a very eflective π value of $22 / 7$, or 3.14285 . but apparently nullified Smyth's theories about the perimeter of the Pyramid giving the exact number of days in the year. The new product gave only 362.76 days.

Summing up the resulls of his measurements in a book entliled The Pyramias and Temples of Gizeh iwhich he was able to publish with a fortuitous grant of $£ 100$ from the Royal Society in London). Petrie remarked that he had never suspected, 15 years earlier, when he had firgt read Smyth's fascinating theory, that it would be he who "would reach the ugly littla tact which xilled the beautifui theory

With success and recognition, Petrie turned from th romantic exploits of discovery to the prosaic minutiae of scientific archeology.

In the wake of Petrie's demoistion of Smyth's basic contention about the length ol the year being Incorporated in tho Pyramid's porimetor, soured academicians viere happy to bury Smyth along with his theortes. Foremost among such undertakers was Prolessor F. A. P. Barnard, president of Columbia College in New York, whose spadework in the 1890 s consisted in arguing that the vatue of π was a modern discovory and therelore could not have been known to the ancienls, In long-winded pieces for small periodicals, Barnard attacked Smylh for his "Iolly," and the builders of the Pyramld for the "stupidiy Idiotic task of heaping up a pile of masslve rock a million-and-a-half cubic yards in volumo."

In Barnard's opinion the Pyramids "originoted before anything like intellectual cullure existed; have been constructed withoul thought of scientilic method, and have owed therr earilest forms to accident and caprice."

Other academicians mocked the theory that the anoient Egyptians could have had an advanced knowledge of eometty, geodesy or astronomy. As recenlly as 1963 an geminent engineery in Baltimore, author of an expensive privatety printed booklet, Designing and Building the Groe Pyramid, was to write: "Because the sides of the Greal Pyramid faced the lour cardinal points almost precisely h is usuatly assumed that the designers intended they shouto. but it is unlikely that they had more than a vague idea, if any, of the four cardinal points. Like all peoples, the ancien Egyptians knew cast and west from seeling the heavenly bodies rise in one and set in the other, but notth and south were probably only known to them as general directions There is no evidence in the Great Pyramid that they had any conception of truo north or knev, that a north-south lino was perpendicular to an east-west line."

For years Smy lh's painstaking measurements. carefuliy collected and illustrated in several large volumes (which went through several editions in his lifetime), wero laboled by the acadomicians so much "irash and lancy."

In the conflict of opinions between biblical scholars and men of science, the true purpose of the Great Pyramid was burled in a rubble of verblage

Petrie had become Sir Flinders, and was on his way to becoming the dean of academic archeologisls. Had it no been for the careful work of sorne conscientlous scholars, Smyth and Taylor would have sulfered the late of Paraceisus and Mesmer, being relegated in the history books to the role of mountebanks.

Search inside

IX. SCIIENTIIFIC THEORY DEVELOPED

Ironically, the next great investigator to throw light on the question of tho Pyramid was a man whoso objoct was to destroy and dispose of the theories of Robert Menzics, whose ideas about the prophetic revelations in the passage system had addec to the difllculties of Plazzl Smyth.

An agnostic and a sober structural engineer from Leeds, in the north of England, David Davidson v/as determinod to destroy Menzies' prophetic theory, But the morehe attacked the data. the mote he was obliged to assimilate it. In the end he was to produce an encycsopedic literature in support he was to produce an encycsopedic literature in support
of Menzies' own idea, and to become convinced that the Pyramid was "an expression of the Truth in structural form" and that it "establishes the Bible as the inspired work of God.:

From further analysis of the Pyramid, Davidson bolioved he could confirm Taylor's premise that the science of weights and measures of the ancients was tounded upon two functions of the earth and its orbit, the standard time unit being the solar year, and the standard linear unit a decimal being the solar year, and the standard linear unit a decim
fraction of the colar axis about which the earth rotates.

On the question of the length of the Pyramid's base, On the question of the length of the Pyramid's base,
Davidson was to vindicate Smyin, yet avold harming Petrie. Davidson was to vindicate Smyin, yet avold harming Petrie.
According to Davidson, not only was Petrie's survey correct, so was Smyth's theory that the Pyramid's base incorporated the length of the solar year.

Petrle, with his meticulously careful measurements, had managed to observe a definite hollowing of the core masonry on each side of the Pyramid. The accuracy of this observation, normally invisible to the human eye, was revealed in Petric's lifelime in a dramatic aerial oholograph taken accidentally at a specific time and angle by Bilgadier P. R. C Groves. the Bultish prophet of air power A similar line alomo the The Brish prophet of air power. A similar line along the savants, had been ignored for a century

Davidson noted that Petrie had faited to extend this hollowing feazure of the core material to his measurement of hollowing feaiure of the core material to his measurement obtained which fittod Smyth's thooretical length to account for the solar year, to four points of decimal.

Sir Flinders Petrie noted a
disting nols distinct hollowing of the core masonty in the central portion
of each face of tive Pyramid. Of oach face of tive pyramid.
Thougn the nollowing amolmis to as much es 37 Inches on the north face, it is nol direetly obseivable uniess spec
Ihes of sight are taken. Pelrie tound no ovidence of hotiowing along the towerlovel easing stones, running
along the base of the Pyramid, along the base of the Pyramid,
which have now been completoly uncovered.
A recent survey by two Itallan scholars. Maraoloallo and Rinotdi, Indicales the
casing stones abow the base line uliay have been sli ghlly sloped toward a central line.

Davidson's plan of the base of tho Pyramid, showing three
cifferent ways of measuring the year's length.

As Davidson pui It: "By reason of this unfortunate omission. scientists have been led to believe that the theory of the late Astronomer Royal of Scottand-Prolessor Piazzl Emyth-requiring a Groat Pyramid base clrcuit of 36,524 inches, was nothing more than a delusion."
ches, was nothing more than a delusion."
The ideal tength poslulated by Smyth for each side of the base in order to obtain the required length of 9131.5 Pyramid nches was 0141.1 Brlkish inches. Petrie's figuro, revised by Davidson, came out lo 9141.4, or about a third of an Inch too long.

According to Davidson, the hollowing eftect would glve hree basic lengths of the yoar as recorded in the base of the Pyramid: an outer or shortest iength, from corner to corner, bypassing the hollowing. a second, sflahtly longer. mich included part of the Indentation of the tour hollowed laces al the base; and a third, which included the entire anglo within each hollowed face. These three measurements, thich coutd have been performed by the ancients at their elsure, could have given the equivalents. according to Davidson, of the three lengits ol the year as computed by modorn science: the solar, the sidereal, and the anomatistic years, each of which is dependent on the syslem used for bservation.

The academicians rebutted that all this was purety attributablo to chanco. An American naval officer who dabbled in digging at Giza remarked that "it a suitable unit of measurement is lound-say versts, hands or cables-an exact equivalent to the distance of Timbuctu is certain to be ound in the root girder work of the Crystal Palace, or in the found in the root girder work of the Crystal Palace, or in ine保
Bul Davidsoris conclusions were to reopen the entire subject of Pyramid measurements and breed a whole new school of pyramidologists.

The solat year is oblained by observing the exacl time between ino successive vemal or autimnal equinoxes, when the day is exacty as long as the night. It is now 365 days. 5 hours, 8 minules and 49.7 seconds, or in decimals: 365.2242 . The sidereal year ifrom the Lalin sidus, lor star) is the time it lakes a star to reappear in th so mpol ine ory, as een ols on ear, of 365.25636 deys, This 20 -minute lag causes what is known as the procession of the equinoxes. which come 20 minules earlier each year in relation to the slars bethind the equinocilal point. The anomallsitc, or orbital, year is the time at takes the earth to return to the point in its elliptica orbit naarest lite sun, or perthelion This is about $43 / 4$ minutes onger than tte sidereal year. According to Davidson, not only doo te Pyramid give inis value, but it gives the number of soler years It takes tor tine parinelion to complete a full circle of 360°

The president of the French College of Astrologers, D. Neroman, a mining engineer by profession. showed in his la Clé Secrète de la Pyramide, published shortiy atter world War I, that Smyth's sacred cubit and Petrie's royal cubit wore mathomatically rolatod, Neroman rovivod Nowton's conclusion that the Pyramid had been built with both basle cubits, Petrie's shorter cubit for the common workmen, and Smyth's longer cubit tor the hermetic science of the designers. Neroman showed that the Pyramid was the precise height and width to contain a round number of each unit As 3 sacred cubit are equal 1040 protene or royal ones. As 33 sacred cubits are equal to 40 profane, or royal, ones, the ase measured 440 royal cubits or 383 sacred cubits: the eight 280 or 221.
It was suggested that tho priests moasurod tho year's length with a sacred cubit so that they alone could make use of the Pyramid's hermetic science. But why this yielded a base of 363 days was not satlstactorily explained.

Another necromantic solution was provided by John B. Schmaltz in a small book entliled Nuggets trom King Solomor's Mines. Schmaliz demonstrated that the modern deck of cards could be taken as a symbol of the Egyptlan year incorporated in the Great Pyramid. According to Schmaltz the 52 cards represent the wecks, the 12 face cards the monlhs, the 13 cards in a suit the lunations. the suits the seasons, the total lace value of the cards (counting jack as 11, queen as 12 and king as 13) 364 days, plus the joker as the magic 1.234, for a total ol 365.234 days in the year.

A more solid boost to the memory of Piazzi Smylhquickly made much of by the pyramidologists-was the retined figure for the polar axis of the earth obtained in 1910 by the Amorican geodosist John Fillmoro Haylord, who computed it at $6,356,910$ meters, the ten-millionth part of which gives a cubit of 635.69 millilmeters, or Plazzi Smyth's sacred cubit. correct to 03 millimeter

Another oxtraordinary figure found by the pyramidologists in the base of the Pyramid was the sum of its diagonats which they computed as 25.826 .63 pyramid inches. This gave a very close approximation of the number of solar years in what is known as the great year, which is determined by the precession of the equinoxes. The great year is the time it takes the earlh to make a complete gyration in the wobble of is axis in relation to the plane of its orbll: this with the sola year, are the two prime standards tor astronomical time.
Actually, the rate ol precession is far from uniform, and

- $33 \times 25.025=826.72$ and $40 \times 20.643=825.72$. It w.ll be arbitrariy lengithaned the royal cubit by about i/ 100 of an Inch
is at present slowly increasing. According to Davidson, the Groal Pyramid rocognlzod this fact and provided a mothod of sums ol dlagonals at different levels of the monument io Indicate the all-ilme mean, or average lengti of the precessional cycle

To add to the coincidences, Morton Edgar, an ardent supporter of Davidson, who traveled to Egypt just prior to World IVar I and made extensive measurements and calculations. founs that the perimeter of the thiny-liftli course, which is meich thicker than any of the other courses, a/so gives a figure for the precession of the equinoxes.

Egyptologists and astronomers ergued that if the Pyramid had been designed to incorporate the π proportion, and its base had been designed to be 365.2422 cubits long, the chances of its diagonals being intentionally designed to mark the length of the precession would be simply astronomical.

Davidson replied that to build the Pyramid its designer must have been deeply acqualnted with the workings of natural law: that belore such a design could be put into eflect, the astronomical properties of the solar year wrould have to be reduced to a simple pyramidical expression.

Davidson clalmed that-without getling into higher mathematics-it was evident that if you know the earth's distance from the sun and the length of the sidereal year in seconds, you can compute the rate at which the earth is falling toward the sun. This in turn would lead to finding the soecific gravity of the earth. of the sun. of the earih and moon combined, the solar parallax, and even the speed of light.

To Davidson the mathematics of the Pyramid indicate that the lormer civilization was more highly skilled in the science of gravilationat astronomy-and therefore in the mathemattical basis of the mechanical arts and sciences-than modern eivilization. It was his conclusion "that It has taken men thoussends of yoars to discover by experiment what he knew originally by a sures and simpler method." in Davidson's words' "It means that the whole emptricat basis of modern civilization is a makeshift collection of hypotheses compared wllh the Natural Law basis of the civilization of the past."

As to why the Pyramid was built and its passages carefully secreted. Davidson surmised that the builder intended to monumentalize the science of his time for another civilization far in the future, much as we go about burying timo capsuice According to Davidson, the builder knew that the faculties by which he was able to handle the formulas of natural law could alrophy in man, and ihat by conveying his science to deings of a later civilization he might spur them to recover hose powers.

The precession of the equinoxas.

\qquad
\qquad
\qquad

\qquad
\qquad

Davidson's computations to show tial the Pyramid's base in dimensions and motion."

Like Menzies and Smyth betore him, all that Davidson managed to accomplish was to antagonize the scientific world with his insistence upon the record -prosorving nature of he Pyramid while swamping the average pyramid enthusiasi with the overwhelming bulk of his detailed mathematical analyses and computations.

Even worse wore tho offorls of a succession of eyramidologists who attempted to prove the Great Pyramid conlained a six-thousand-year prophelic history of the world mmencing in 4000 BC . and going to A.D. 2045 which commencing in 4000 B.C. and going sited with the prophecies of the Bible They saw in the Pyramid an allegory in stone in which the Dosconding Passage represented humanity on its way down toward

Morton Edgar, supporter of the Droshetic theorles about the Pyromid, etooping to enter the King's Chamber. The piclure stows how the thoor was insorted batween the
walls so as io obtain both th T value and the $3-+5$ triangle.

ignorance and evil. At the juncture of the Ascending Passage evll spirits were to continue toward the pit, whereas the rest of humanity, beneflting by the Christan Dispensation, moved upward along the Ascending Passage toward the Light of the Grand Gallery. Having passed the Great Step, humanity must continue bent in submission through the Antechamber of Chaos-representing the modern age-before it could come out into the King's Chamber and the glory of the Second Coming.

The prophatic chronology was supposed to be marked out atong the passages and chambers, with one year corresponding to one pyramid inch. commencing with "Adam." or the "first created man," and ending with the "Adam." or the "firs

According to Morton Edgar: "By the year 2914, the end of the 1000-year 'Day of Judgement,' mankind will have experienced the full benefit of the sacrificial work of Christ. and vill regain that perfect human nature which father Adam lost in tho boginning of his disobedience 7040 yoars previously."

By general agreement the commencement of the Lov Passage into the Antechamber was sald to mark the beginning of the Great War in 1914 . The end of the Kings beginning of The Grear War in 1914. The end of he King Considering the wide popular acceptance of such Considering the wide popular acceptance of such prophets as Edgar Cayce and Jeane Dixon it showa not nave been harder to believe that some ancient prophet coulo

Search inside

Interior features \boldsymbol{n} the gieat Interior features n the Giea
Pyromid elluded to in the anPyromid olliuded to in the an-
ciont Egyplian texis such as The Book of lie Dead, accorring to the prophct "pyramidologists"

Chronotogy of the past 6000 Chronorogy of the past 60 years as indicated in the cordino so Menzles and Plazzl

have had prescience ot the lollowing 6000 years. and bult his vision into the pyramid passages; but as each prophetic date went by with no appoarance of a Second Coming, the idea of the Pyramid as o prophetic caleridar became largely discredited.

By 1920, when the waters of the Mediterranean latled to become thick and viscid, and the rivers and fountains of the world failed to :um into blood, as prophesied by Colonel J. Garnier on the basis of the Pyramid chronology, the whole subject hecame so unpleasant in the nalls ot academe that subjeci lew professors dared mention the Pyramid as anythin

Nevertheless, a few intrepid investigators kept minds openenough to continue theif research into the structure and open enough to continue ineif research into the structure purpose of the Pyramid, and to put forth some theones much ihat Jomard, Jaylor, Smylh, and even Davidson had propounded.

X. A THEODOLITE FOR SURVEYORS

One basic function of the pyramids on the Giza plateau was discovered by a chiel engineer of the Australian rallways, Robert T. Ballard, as he watched them from the window of a passing train in the 1880s.

From the constantly changing relative position of their clear-cur tines against the sky. Ballard realized that the pyramids could serve as excelient theodolites tor a land survoyor, onabling him to triangulate tho land anywhere within sight of the pyramids.

The land of anclent Egypt was parceled out in small lots to Individual priests and soldiers, the boundaries of which would regutarly vanish with the flooding of the Nile.

By means of the pyramids, not only could the surrounding country be quickly resurveyed, but boundarles destroyed by the Nite could be readily restored

From the silhouettes of the pyramids. the engineer realized that lines could be obtained as perfect as can be faid out nowadays with all of our modem instruments. With a slring and a stone held in the hand and the cleas-cut point of a pyramid 20 miles away against the ball of the sun 90 million miles away, the error in such a line would bo trilling

What's more, the same building could also be used with either moon or stars.

Knowing the latitute of the pyramids, survey lines cousd be shown all the way to the coast of the Delta-with nothing moro than a string and a weight.

As the engineer's train steamed southward along the bank of the Nile, more pyramids appeared on the horizon, and the engineer realized that with a processtion of such theodolites it would have been possible to adjust the boundaries of Egypt from one end of the country to the other.

Ballard figured that the simplest portable survey instiumen would be a small scale model ot the Pyramid of Cheops in the center of a circular graduated board marked like a compass. Whon the north end of the cerd was pointed toward the north, and the faces of the model turned to indicate the same lightand shade displayed by the Great Pyramid, the

- Statisticians estimate that eight million people were crowded into
a space of only $\$ 1,500$ square miles, giving a density of 695 per
square mile-wilch is more inan modem Beioium. the most densely populated part of Europe.

Search inside

Fig. 38. From the Norli, Wet Pcuring S15
Sun in the West
Fig $3!$ From the South Exal Sunnt tire ives.

Tho pattern of shadows cast by the iniree larce pyramids of the Gize piateru cen senve
to oriont the viewer as accurately as a compass or theodolite. Ballard suggests hat the smallor pyiamid of Mywerthos was intentionally sheathed in red granite, in pyramids. so as 10 facilitate ho work of the sumeyor.

Fig 46.
South 3. West Bearing 198:26:58is

The giza complex of priamids, as depicted from the air, showing the north. south of the Gieat Pyramid. Aecording to Soviot space ongineer Alexander Abramov the turee large pyramids on the Giza plateas are arranged in a spectal geomerric contiguration known in ancient Egypt as an abaka, Ballard found that several Prthagorean trlangles ould bo formed by the pei pytamids.
surveyor could simply read off the angle of bearing, With a model of all three pyramids, the reading would be that much more exact Furthermore observation of the next pyramids farther to the south could be tied in with these readings.

The Australian engineer also worked out that the pyremids could be used tor surveying by right-angled triangles with could be used tor surveying by right-angled triangles with
sides having whote numbers, such as the $3-4-5$ triangle and the $2-\sqrt{5}-3$ triangle Petrie had found in the King's Chamber both of whioh were fundamental to land surveying. Simitarly incorporated in the ziggural of the Babylonians, the triangles were concelved by ine ancients to explain the secret order of the cosmos, a conceit which perco!ated to Plato. In the Timaeus he explains the cosmos as being constructod by tho triangle 3-4-5 and the number $\sqrt{5}-1$ or 1.236068 (which In common practice was taken as 1.2345).

For ilght-angled irigonometry the Ausiralian engineer realized, true straight lines could be extended from the pyramids in givan directions by direct observation, without aid of other Instruments, and that with the simplest of instruments angles could be exactly observed from any point.

In a short time anyone might construct a table for himself answering to every degree or so in the circumference of a circle for which only forty or lifty triangles are required.

(9)

 OF THE AGESBallard's little booklet and one of Smyth's discoverios at the Pyramid brought anothor strango investigator to the sceno. Smyth had been astonished that with the advent of spring, when the sun rose hlgh enough to shine down the northern slope of the Pyramid, the structure appeared to swallow its own shadow at noon. Smyth doducod that the Pyramid had been designed as a huge sundial whose shadows could indicate the seasons and the length of the year.

By Smyin's reckoning the Pyramid had been intentlonatly located, oriented, and sloped lor the phenomenon to occur in that latitudo at the spring equinox, when at noon the sun Is direcily over the equator, although for some reason the phenomenon no longer occurred precisely al that parilcular date.

Unboknownst to Smyth, the French astronomer Jean Baptiste Biot had been 10 Egypt in 1853 and noted that "wlih or without intention by the Egyptians who bullt the Great Pyramid, it has, since it existed, functioned as an immense sundial which has marked annually the periods of the equinoxes with an error less than one day, and those of the solstices with an error less than a day and three quarters.

The phenomenon had a great impact on an obscure Yorkshiroman, Moses B. Cotsworth, a legislative enthusias whose life's ambition was to reform our present barbarous almanac.

- The present calendar derives Irom the early Romans, who had a 10 month year a 334 days hence our September. Octover. November. December. In the seventh century B. C. Numa Pompllilus Is credited with addlkg January and February for a tunar yeer of 354 days. The shorlage of $111 / 4$ days cuused the 3 easons and the add 91 days 1046 BC . and succumb to the suggestion of Cleopatia that he acopt the Eoyptian civil calendar of $3651 / 4$ days. Even so, the difterence between the civil calendar and the actual solar vear ol 365.2422 days added up to an extra day every 128 years, which obliged Pope Cregory XIII 10 drop 10 days fiom 1582. Whon Protestant England roluaed to go along. Chrislondom celabrated diflerent Christmases in England and Franco, till the British finslly relented in 1752. though there were streel riors in Loncon with in
snouts of "gwa us back our ten days." By skloplng leap days in centurtes which are multiples of 400 and 4000 , our calandar is now good for the nexi 20,000 yoars, but anyono who troubles to read Cotewont's impassionad plea for a moro rallonal syslam than ou calendar of floating holidays vill find it hard to dispute his logic.

It early spting, when ure sun ises juct high onough abovo he apex of the Great Pyramid north laco vanichee at the stroke of noon.

Gones and pyramids designed by Moses B Coishorth to demonstrate how thidow patterns could be used 10 yoar.

Cotsworth's models show how a squaro-basod pyramid
oriented to true north will criented to true norih will tho a pointod shadow ors
the howing no orientation, will not serve the purpose.

Cotsworth was convinced that the deslgners of the Pyramid had intended their linished structure to serve as a porloct almanac for registorlng tho soasons and the yeat. To prove his point Cotsworth went in search of furither evidence.

Just before Piazzi Smyth dled in 1900. Cotsworth managed to have several conversations ivith IIm, and atter his oeath was able to get hold of Smyth's books and papers when they were put up for auction. Though Cotsworth relused to accept Smyth's prophetic theories, he was determined to vindicate the astronomical theorles of the anclenl Egyptlans, so he set about reconstructing with models the sundial system on which ho belioved the Pyramid had originally been designed.

Cotsworth noted that at the latitude of the Pyramid, an ordinary obellsk would serve admirably for telling the time of day, or the genetal course of the seasons, but could not be buill high enough to throw a shadow tong enough to detect the length of a whole year of 365 days, let atone throw a shadow fine enough to distinguish the extra quarter of a day to four points of necimal. To obtain the dilference in length of 1 loot per day would require an obelisk 450 feet tall, periectly vertical and precisely oriented.

With the suris winter solefice angle of $36^{\circ} 45^{\circ}$, the Pyramid
will ltrow a shadow of 648 dll lltrow a shadow of 648 eet. Deduet hall the Pyramid's
base length of 750 feet. or 380 , and the maxlmum length of the Pyiamid's winter

Colsworth tound thal para ot the pavemert notilh of the pyIamid was paved with bigais whose widiths were clocet to the $11 / 2$.foot gradesuccessive days Just before uccessive days just berore own shadow in the spring

Cotsworth figured that the dimensions of the Pyramid would be ideal for meesuring the six winter months, when the northern slope of the Pyramid is constanily shaded and when the shadow cast al noon onto the nonhern pavement grows ionger up the meridian to a maximum at the winler solstice, gradually decreasing to the point of disappearance at noon on a cerrain day in March.

To test his theory. Coisworit made several model pyramids and cones and laid them out on carelully diagrammed paper. On these sheets he marked the outline of the shadow cast by the sun each half hour during a period of several months,

To his satisfaction Cotsworth was abte to prove that the pyramid was the best shape tor the purpose. The pyramtd was more easily oriented to a perfect north, its flat slope was easier to angle, and its sharp edges cast a better shadow, Also, the actual struclure would be easier to build to the requited helght in the form of a pyramid than a cone.
to measure the Pyramid's lengthening and shortening shadows, Cotsworth realized that a wide and perfectly lovol pavement, or "shadow-lloof," should have been constructed on the northern side of the Greal Pyramid, presumably with a meridian line running due north, and a pavement laid in some geometric pattern to lacilitate the measuring of the shadows.

Cotsworth worked out that a structure 484 feet high, such as the Pyramid of Cheops, woutd require a "shadow-floor" stretching 268 feet northward of the base in order to include the full length of its shadow at ils longest point, at the winter solatice in December.

To verily his theory, Cotsworth satted for Port Said in November of 1900 aboard the P. \& O. liner SS. Osiris. At the Giza plateau he found the north side of the Pyramid of Cheops reasonably clear of rubble and the rocky plateau leveled to the sequired distance. At the level of the main platform on which the Pyramid rests, he round a pavemeni, or "shadow-floor," which extended as far as the remains of an old wall which had onco surrounded tho pyramid complex.

Inslead of being paved in adjacent squares, Cotsworth sound it latd in aliemate nali squares, which provided twice the number of junction points by which to measure the daily shadow of the Pyramid along the meridian al noon,

To support his observations, Cotsworth made a series of photograplis of these shadows as they grew shorter toward photograplis of these shadows as they grew shorter toward blocks had been cut in widths vory closa to tho $4.45-\mathrm{lcot}$ gradation by which each noonday shadow succeeded the former as they apptoached the vanishing point in March.

Search inside

Pholograph toker by Cota-
worth showing shadow cast by worth showing shadow cast by The sun close to the base of Pyramid at noon of tho
day betore the inlended equinox. The negative was otolen and the print has suffared in reproduction; but the paltern of shadow can be pavomont.

It was onty thus, says Cotsworth, "that the ancient priesis could havo established by physical obsorvation of tho shadow on the flagstones, the precise length of a year to . 24219 of a day.'

William Kingsland, a protessor of astronomy, commenting on Cotsworth's conclusions, pointed out that some of the paving stones arc aclually laid at all kinds of irregular angics and corners; but the corners of these stones are clearly cut out io it into the adjoining stone-indicating, it anything, an even more sophisticated geometric pattern.
To make up for the summer half of the year, when there
According to Ktngstand. Cotsworth's leveled rock area did nol oxtend 208 feet north from the northem base of the Pyramid, bus
 of a surround ing wall $1 / 2$ loit thick; but thero is no way of tolting have once continued beyond II, and been dismantled by ine Arabs ior bullaing blocks.
was no shadow on the northem slope of the Pyramid Cotsworth figured that the prieste could have subdivided and tabulated the intervening months.

In this he failed to realize that the southern face of the pyramid, being highly polished, could throw a triangle. not of shadow, but ol sunlight onto a southern pavement during the summer months, quite as definite as the winter shadows thrown on the norlhern side.

From May to August the south face woutd cast a iflangular filection of the sun onto the ground which would shorten as it approached the summer solstice, the shortost boing at noon of the solstice, lengthening again till noon of the last day of summer.

Noon rellections would also de projected every day of the year trom the east and west faces. But this was to remain for David Davidson to establish.

From a study of the sharper slopes of othet pyramids, such as of Saqqara. Medêm and Dashur, Corsworth deduce hat their bullders may have aimed these slopes not at the equinox, when the sun is midway, but at the summor solstico, when the sun is highest in the sky at noon. Sneteru's pyramid

Deilberately broken pattern of paving stones observed by william Kingstand on the orith slde of the Great Pyramld, opperently intended for
finel mathematical measurenent of the sun's shadow on mercecsave doys and years.

Search inside
at Dashur, with lis milder slope of 43°. may have been almed at the vinter solstice. when the sun is lowest at noon. From the gradually corrected slope of Saqqara and the change in angle in the bent pyramid at Dashur, Colsworth concluded that the Egypilans may have progressed northivard to the "Iruer" pyramid form. or π-shaped pyramid. at the thirtieth parallel, where morning and atternoon shadows form a seties of perfectly straight lines.

In this, Cotsworth was supported by Joseph Norman Lockyer, the eminent Britist astronomer, who taught astronomical plysics at the Royal College of Sclence. Lockyer noted that pyramids other than that of Cheops appeared to be oriented not to true north but to the rising sun at the solstice, which changes with the latitude of the place of consiruction.

According to Cotsworth the pytamids were originally developed from mastabas or raised terraces buill to suppori an obelisk. To lengthen the shadow, the obelisk was successively ralsed on higher sloped platforms, which eventually turned into stepped pyramias.

Davidson's diagram of the refiections at sunlight cast by the pyramid $8 t$ noon of the summer soletico.

Colsworth points out that the otdest true pyramid, that of Medûm, was constructed in several stages, as evidenced by the pollshed casings at each level.

The process, says Colsworth. was developed to the point where the results no longer increased in proportion to the effort expended. A 60 -fool platform which reised a 60 -foot obelisk increased its shadow by 100 percent, but an added platiorm ol 40 feet only Increased the shadow by 19 percent: eventually the top plattorm became $: 00$ small for raising an obelisk. According to Cotsworth, the optimum design turned out to be the solidificed Pyramid of Cheops, with its slope se: out to be the solidilica pysar old oops, with ils slope se for a particular latitude to swallow the equinoctial shadow. Once this method of establishing the precise length of the year had been found, says Cotsworth, there was no further
need for enormous pyramids. need for enormous pyramids.

Cotsworth obtained furller confirmation of his theory from a comparison of the pyramids with the arllficlal thllis bullt by ancient inhabitants of Britain who traced the year's end by the longest shadow of the year cast from vertical cones or artificial mounds such as Silbury Hill.

Later inhabitants of Britain, such as the Drulds and Goths, conlinued to count the year's end from Yuletide, the December solstice.

Silbury hlli In Wlishire. England, covers five acres
and is bull of ovar a millon and is bull of overe a million Aecording to archeologiete it is at least four thousand years oid.

Cotsworth says that Silbury hill was designed to have a Moypolo on lop to cast a nadow up and down the trunceled hil and onto tho
leval piain to the north, so as to mark the four seasons the year.
The cone uas truncated at point where the shuttest shadow thrown by the Msypolo on the lengest day of the year incicatod tie summer solstice. On lhe lovel plain north of the hil a sime was placed in of the longest shadow cass by the longest shadow cast by olstice, or shortest day of he year.
The juncture at the bottom of the hill, where it touched the plain, merked the spring and autumn equinoxes, when the night the night.

Divid in oid ifish meant "he nho knows." Julius Caosar
out eartiost source on the sublect. coosideres the Orulds highly aducalod and woll organized in oe Bello Gallice
he commented: "It is aspehe commented: "t is sape-
cially tho objoct of tho Druids cialy the objoct or tho bride
lo incule this-that souls do not perish, but affer death pass into othor bodice, and
they consider that by mis be. lief more than anything eise mon may bo led to cast away the teat of death. alld to bocome courageous, The
discuss many paints concernirg ine neaventy bodies and their mation, the extent of tho universo and the world. he nature of things. the in mmortal gods: and thay in truct the yous: and they things."

As Cotsworth reconstructed the system, the truncated Cone of Sllbury Hill enabled the anclent astronomers to measure the length of the seasons and the year by the ongth of shadow, cast by a pine Maypolo, which sorved as an obelisk, atop a hill intentionally sruncated so that its edoe ould also mark the summer solstice or the shortest shadow of the year.

Had these astronomers simply required a great height, says Colsworth, they would have used the adjacent Abury Hill, with its wide top which could easily have been raised. But this, says Colsworth, would not do; they required an absolutely level plece of ground on which to mark the progress of the shadow. Hence they had no altemative but to pile up an artiticial hill abovo the level plain. Fortunalely, in laliudes of 50° or 80°. such as Brittany or Stonehenge. low mounds voould oive shadows long enough for detalled measurement. A height of 225 feel in Wiltshire gives a

The main chamber in MaasHowe. showing corbeled
monoilins which could be ctored at the lop by a singlo movable slat The jointing in this prenistoric masterplece Pyramid

The entrance passage to the
Msea-Howe observalory is Msea.Howe observatory is very similar to

Macs-howe, noar stomes in the Orkney Isiands, is a manmade cone-shaped pyramid 27 fect high and 115 feet across.
with an outer clicling dilch 45 feet wide and 700 feet in circumference.
It has a 54 -lool obsonation passage almed like a tele-
scope al a megalithic stons scope al a megalithic ston
to indicate the summer solstice.
Its ceniral observation chem ber. corbeled like the Gieat
Pyramid's Grand Gallery is Pyramid's Grand Gallery, is
buill of megaliths welghing 3 tons. carefully leveled, prumbed and so fine:y jolnted they will not admit the blace of a knilo.
shadow almost equivalent to the shadow of the 484.100 Pyramld of Clieops.

One of the most remarkable of these prehistoric European mounds still exists at Maos-Howo, noar Stonnes, in tho Orkney Islands. It is equipped with a 15.1001 square observotory chamber and a 54 -10ol slghling tunne!. The lube is almed al a conspicuous man-ralsed monolith 42 chains (2772 teet) from the entrance, which lines up with a spot on the horizon where the sun now rises 10 days before the winter solatice. Another monolith, to the west, called the Watchstone, indicates the equinoxes. LIke ine Greal Pyramid of Cheops, the observatory chamber is built of huge megatiths and its ceiling is corbeled. There are also three "retiring rooms for he observers," somewhat like the Queen's Chamber in the Greal Pyramld.

Clicular monoliths similar to Stonehonge located at Stennes Howe.

In Stonenengy, a British Temple Restorcd to tho Druids, ered a book "lar Defore ks age and perraps not yet sufficiently appreciaxod," its author, Dr. Villiam Slukely, ueh mogalithic cirelos had always been arranged on aven and round numbers of the prolane cubit of 20.7 inchos nearly." and not in feet or
any olher known standard of

Igit. Sniylh remaiked at although tho ideo "was nticuarlaris, I have reve: heard of any of them having scortainod by aclual neasure at the pipce, mat the Stukelian theory would nct

Prolessor Alexander Thom has recently shown they ate bult on a mogalithic yard of 2.72 feet

Search inside

An Egyption Maypolo.
Varlous shaped motinds, or barrows," waro consliucted worth considered Item manmade instiuments for bserving the movements of heaventy bodles.
Alexsnder Thom
verbuly Circle near Siors enge the greatest and mos: amarkable circle in
Britan, it not in the word.
"Is gieatness," says Thom,
does not tio in ita sizo alone but in ine remarkable manne in which its arcs are buill up om a basic Pythagorean trinole so that each etains an
ategral character, ond in the xceedingly high precisiont o the selting out. a preciston class survayino."

The Scotlish lairds in residence at Maes-Hown-or Maiden's Mound-still plant a Maypole on the originally llat top, perpeluating the ceremony begun when observations were made of the shadows cast by the pole on the flal terrain to the north of the mound.

In England throughout the Middie Ages and the Renaissance, the Maypole with its tall garlanded and decorated shaft (stowed away for the rest of the year under the eave ol a house) was set up on May Day. When Cromwell came to power he banned tho Maypole. As the National Encyclopedia puts it: "The Puritans, to whom we owe the loss of so many of our public games, and 50 much of our merriment, ordered all Maypoles to be destroyed by Act ol Partiament in 1644, as a 'heathenish vanity, abused to superstition and wickedness,' and finod the constablos five shillings weekly as long as they slood."

The custom was revived with the Restoration, and the last Maypole erected in London-all of 100 leet high-stood on the epot where the church in the Strand now stands near Somersel House. It wos taken down in 1717 and conveyed to wanstead Park, in Essex, whete it was fixed as part ol the upport of a large telescope set up by Sir isaac Newton.

A glance at the outlines and cross sections of the pyramids of Saqqara, Dashur and Medurm will show that, like anclent British observatories, each had a sighting passage. pointed at a norihern star. The passage ended in an

Romains of "Old Sarum" an ancient

The originot building of the stepped pyramid was a
mastaba 33 meters squar buitt of coarse rubblo eased with tine whlte Ilmastone. above a square pit.
The original entron The original entranco was through a hole in the rool
directly Into a 28 -meter sher linod with gronite. The meatabo was sibsequenlly heigttener into a stapped pyramid by the suporimposition of
thras more terraces. terided eastware fosiensibly 10 include gievos for Zoser's familyl., the struclure was then a rectangle
120 metero by 108. Two more 120 metero by 10. Two more
slories wers added so that it became a six-slep pyreninld.
cased with finc limestone, at cosed with finc limestone. at a slope angle of $72^{*} 30^{\circ}$ A
second enirence was placed socond enirance was piace down a rock-cut filght of steps to a more restictad
"sepulchra chamber." to King zoser col tie Third Dynasty) on the basls of his cartouche on come stones and is belleved to have beem erected by his tabui
archlitect imhotep. In 1929 Frith lound a basreliet in the pyramid depleting Zoset, and in the 1050s Prot. Laver found a mummifted
which he belleves lo have been Zoser's.

Stepped pyramic of Saqqasa. belleved to be the oldest Egyptlan pyramid.

Tho pyramid of Madúm, on a nses 92 ineters high, and is so situated that it is a lond. mark for mies in all
drections.
Moet of the outsido limeetone casing which sloped al
$51^{\circ} 52^{2}$, has been 2. has been semoveu. whowing that the pyramid Iom an original mastaba form an original mastaba about 20 met
slopes of 75°
The pyramid grew in sevan tepe by maane ol o serics of accretion walls. each of
which was cased in ting while which was cased in ting wh
limestono: evenlually tho spaces belween the steps were filled In . and the ontlie pyramid cased with whilte limestone. most of which dato (possibly during the eign of Rameses III) Ihough ortions remaln. Three occretion faces are presently The base is still covered with sand and debris. An enliances on the north Aide, 30 meters abovegroing locde down a ramp 57 meters long, sloping at $27^{*} 30^{\circ}$. to two antectiambers and a vortical shalt in the conle ot the building. The shaft ises to the "sarcophagus corbeteo root of limestano buill n seven staps.
In 1891 Pelrio hound fragbelleved to have belonged to Sneleru; oo the oyramid has father.

Sneleru's bluntod or rhom-
boical pyiamid at Dastiur boidal pyramild al Dashur is base and 100 melors high. The lower Donton slopes $54^{-} 41$ the upper portion ${ }^{43^{\circ}}$. Th casing is of line white
limesiona: the boovy Is belleved imesiona: the bous is belleved
bo of ccerser limeotone. There sie lwo entrances one on the north ard one on the west side. lescing to two mointhem entrance is 1 meters aboveground in the centar of lie bouver face and leads down a ramp inclined at
$28^{\prime} 38^{\prime}$ for the firsi 13 melera then at $26^{\circ} 80^{\prime}$ for the remaining 65 maters. A shon horizontol possago 12 meters high leads to a line chamber whose foof is The western entrance, which Is 29 meters above the base. cads to a ramp deeconding to a noilizonlal Dassace with two poricullis stabs and a hamber with a roughly corbeled roor

Cotsworth'e oxplanation of muidical citcles such as Stonehengs.
observalion chamber with a corbeled rool with a small opening Jusi at ground level, presumably for sighting a sta directly overhead at the zenith, or for lowering a plumb line o coincide with a line sighled down the sloping passago. The similarity to the structure at Maes-Howe is indeed amazing. Yet Maes-Howe has also been considered as nothing but a burial chamber. A recent writer on Maes-Howe discarded the theory that tho mound mighl have had astronomical significance, saying that the belief is accepted Ey no "serious students of archeology."

Sclentists of other disciplines are in disagreement, and have produced Interesting data on the orientation and purpose of megalithic monuments.
in his Megalithic Sites in Britain, published in 1967. Professor Alexander Thom, who for many years held the chair of Engineering Science at Oxford, shows how the slone and wood henges of Britain of the second millennium B.C. were aligned on certain stars, werc planned on the basis of a geometry which anticipated Pythagoras. and were unllormly bullt on a unit of measure which he calls a megalithic yard of 2.72 feel or .829 meter.

Acoording to Thom, megalithic sites in Britain served the purpose of calendars and clocks. During the long winter alghls the only indicators of time were the stars. By observing the rising and selting of stars of the tirst magnitude, of their

Search inside
transit over the meridian, it was possible to tell the hour of night.

Thom says Ihat in Britain between 2000 and 1600 B.C. there viere about ten or tweive stars of the fist magnitude whose rising and setling could be clearly observed. Thom also found a great number of stonos set to indicate the point of rising and setting of tirst magnitude stars, and many slabs and alignments which accurately marked the merldian.

For such pointers to be accurate the observer atso had to know the date. This was oblained from the sun calendar arrangement of the stones.

As for the accuracy of the alignments. Thom says the ancient engineers managed to raise perhaps ten thousand megalliths trom one end of Britain to the other, and sel them with an accuracy of 0.1. When thoy vanted to, says Thom, they could messure with anaccuracy of 1 in 500 .
F. J. C. Aikinson. professor of archeology al Universlly Colliege, Carditl, an authorily on Stonehenge, and a severe critic in this field, concludes from Thom's dala that a high degree of competence in empirical astronomy existed in Britain 4000 years ago.

This supporis the data of the contemporary Greek astronomer C. S. Chassapis, whose analysis of tho Orphic Hymns indicetes that the Greeks of the second millennium Hymns indicetes that the Greeks of the second millennium
B.C.. also had an advanced knowledge of astronomy. These B.C.. also had an advanced knowledge of astronomy. These
ancient Greeks, says Chassapls. knew that the seasons were ancient Greeks, says Chassapls. knew that the seasons iw caused by the earth's rotation around the sun along the ecliptic, and had determined the torrid, temperate and frigid
zones. They had established the equinoxes and solstices, zones. They had established the equinoxes and solstices
and knew that the apparent daily rotation of the stars in and knew that the apparent daily rotation of the stars in
the neavens was due to the earth's rotation on its axis, which formed a northern pole in the sky. This knowledge, says Chassapis, was taught by the Orphics to the initiare who distinguished between the "flery" stars and the seven planets which they called by today's names. The second millennium Greeks used a calendar of twelve conjuctive monihs from full moon to full moon, and accepted the presence of mountains on the moon. They believed that all phenomena were governed by a unlversal law, and concelved that space was filled with ether.

Lyle B. Borst, professor of astronomy and physics at New York State University in Buffelo, in an article in Science (Nowember. 1969), notes that more than forty churches, mosques an(1 temples have now Deen idenifled from Norway
many churches in Eurods continued to build with lheir lowers oriented to the cardinal points. or to mark the others were oriented to suntise of the salnt for whorm they wore named. St. Peters Basificr in Rome is rlented due east so that at ho vemal equinox the great doors can be thiown open at suntise and the sunryy paseing through the high allar.

to Egypt, all laid out in megalithic yards of 829 to 840 meter. ${ }^{\text {. }}$

Professor Borst, who went to England to make a model of Stonehenge to demonstrate to his students how astronomy was practiced before there viere telescopes, suggests that the axes of many early Chrislian churches in Britain are he axes of many early Chrislian churches in Britain are ald out on top of megalithic foundatons originally determined by an alignment with stars; he Suggests thar Canter-
bury Cathedral was aligned with the oquinoctial rising of bury Cathedral was aligned
Betetguese about 2300 B.C.

Borst also shows that the geometric plans of the megalithic monuments were obtained by means of 3-4-5 triangles and other right-angled triangles laid along the axis of stellar observations.

Alfred Watkins, In his The Old Straight Track, published in 1920, pointed out that many churches in England were situated on sight lines between beacon points and that ancient man was inclined to trevel in a atraight line from beacon to beacon. The churches served as relay points.

Watkins suggested that where topographical features were lackirig, observation towers were buill, and such geodetic points, initially guarded by the surveyor priesthood, remained hallowed spots even after the rcason for them had been forgotten. Later arrivals buill Ghurches on these spots, as is indicated by Bede who reporis that Pope Greg-

- II 840 molet is taken as a mogalithic yard, thore ale oxsclly 275 220 in the apothem and 175 in the neight.

Search inside

Examplos of trish and other round towers.

There are remains of some 120 observation lowers in ood condition. ranglag h height from 80 to 132 feet. Tho lower of killiculten is
the hignest.
Built near churches betwieen the eighth and thiteonth censuries. uns towers nave door and window janmbs that ale narrow like tho doors which served to moasure the which served of the sun in its ally and seasonat movements.
ory I explicitly ordered Blshop miletus to build churches on pagan shrines.

In the Middle Ages in Ireland, Catholic monks still used tall conical towers with carofully orionted openings al the op to observe the skies and record the passage of the days. months and years by shadows on the watts and lloors.

These "Round Towers," as they were called, were fitted or Polaris observations al the north window, for transit obsorvations at the south window, and for noting the momen of the rising and setting of heavenly bodies at the east and west windows. H. G. Wood in his Idea! Metrology says that by west windrows. H. G. Wood in his lidea ke the spider lines in a telescope, the exact position of a star could be noted. The walls being tivo or three feet thick, the solar shadows of the jamb and lintel cast upon the floot within would show the hour of day and the time of the year. Every month could have its transil floor-mark.

Similar structures have been found in Franco. In a bookle oddly entitled Fallcon, privately pilnted in 1970, the author Maurice Guignavd. a French arilst and ceramist. describes a small pyramid in the south of France built in the hirteenth eentury by Knights Templar on their return from the Middle East.

Gulgnaud observed that at solar noon of the autumn equinox of Seplember 21, 1969 (which in that region occurs at 12:53 P.M.) the pyramid projected no shadow on the ground around it. Guignaud also noted that a raised area in the doorway caused the sun to cast a shadow that precisely split the end of the entranceway.

Al the equinox Guignalsd measured the shadow of a meter slick heid vertical at noon and found it to be exacily one meter long. whereas on June 21 it cast a shadow of 80 meter and on December 22 a shadow of 2.52 meters.

Gulgnaud lound that this exolic truncated pyramid, which is known by the weird name of Ratapignata or "The Bat." was also built direclly over two subterranean pits, one almost above the othet, and that carved signs on its walls indicated thad been usod for astronomical and astroiogical observation.

According to Cotsworth, the value of anclent astronomical observatorles cannot be overesilmated. The importance of establishing the exact length of the year so as to know when to plant and vihon to harvest crops could mean the difference between femine and plenty.

Far from deing Protessor Barnard's "stupendous monument of folly," the colossal effort employed by the anclents in bullding the Great Pyramid (or the million-ton mounds of the Britons) would have had a vital effect on the citizenry, redounding is the benelit not only of the builders, but of countless generations to come

Coisworth look several more photographs at the Greal Pyramid to InuEtrate his hesis. Dut most ol these were slolen from his carriage and
iretrievably lost. This partlcular pholograpr. laken kI 1900 by a third party, shows Cotsworth seated on a camel with the Sprinx and
the Great Pyramid as a bac the Great Pyramid as a back
ground The white-whiskered arab at ine exireme right is none other then the indestigable All Gabrl, now Cotsworth to the list of Greal Pyramid explorers he guided ound Giza since the time of Cavigila and Howard-Vyse In the 1830 s.

Search inside

Archeologists give varying
opinlons as to the ago of tho Apinlons as to the ago of tho Sphinx. Petrie considered it
possply prehistoric. Budge possoly prehistoric. Budge
refutes ite boing pronistoric. refutes ite boing pronisto
Most Egyptologisis assion It to Keptrren's reign in tho Fourth Dynacty.
The Sphinx faces oue east. which indlcated to Cotsworth device hy piests who could stand on the flat platlorm rising sun in a direct line to ising sun in a direct line the toilzon miarked by hie
the the point of the asp on the crown on the Sphinx Cotsworth also rourid a sertes of ancien
lines fanning out from the neck of the Sphin x while could have setved to indicote the point of sunrise $3 t$
dillerent cates tram soistice to eguinox.
it has repoetodly takon several nundred men several years to clear the sand from
ita baso and toveal a aix tiered its baso and rove ol a sixtiered
obalisk agalnst its chest (now missing), whict Cotsworth betiovos wers used lor sighting the midday sun. Each time the bast was ceared, windstorms filted viat when the Sorinx was originolyy builh the Sohara was almosl cortainly not a desert.

Lancelot Hogben in Science for the Citizen says that the continuity of carelul observations which preoedod, and the precision involved in settling the exact length of the year, eniltie this achlevement to be regarded as one of the hall-dozen great cultural feats in the history of mankind"

With the present availability of cheap watches, radio ignals and published almanacs, one is likely to underestimate the value to anclent people of a rellable system for telling the day, the season, the year, and, most important in Egypt. day, the season, the year, and, most imporiant in Egypt. where the entire system of agriculture depended on the
swamping of the arable lend, the forthcoming flooding of the Nile.
For three-quarters of the year the Egyptian peasants would leave their protected villages on the hillsides and move into the flatland with their families, livestock and most of their belongings, to plow. seed and harvest the fields.

When the time came to move their families and beiongings back to the hills, they required at least a lortnight's warning lost thoy linger too long and be cut off and drowned by the yearly rising of the waters.

According to Cotsworth. afl efforts at tracing the number days in the year by purely seasonal signs would have iven imperfoct and variablo results.

In the early dynasties tho flooding or the Nile was said to ave been heralded by the annual heliacal rising of Sirius, known to us as the Dog Star. Once a year. with the first glimmer of dawn, Sirlus, a bright star of the firs' magnitude, would eppear in the eastern sky and dominate the heavens till its sparkle was eclipsed by the splendor of the risen sun. This slunning phenomenon was taken by the Egyptians as a sign that the Nile would be flooding in about iwenty days.

But the flooding of the Nile is governed not by the stars but by the sun melting the snows and the rain falling in the Ethloplan highland sources of the Blue Nile To have continued to date the ilooding by the rising of Sitius would hove gradually brought the phenomonon out of phase.
. Muck, in his Cheops and the Great Pyramid, postulates that as a result of a series of disastrous inundations durirg the reign of Cheops, the Egyptlans were obllged to change from a stellar calendar of 3652563 days to a solar calendar of 365.2422 days, and that the historic Cheops introduced a new calendar by which an extra day was added every four years of 1460 days to account for the differing fraction.

- According to Muck tho now ealondar was dosignod for Choops not by an Egyptian but by a light-skinned European who brought to Egypt an otder, more accisfte calendar such as that of Dardanie. l|ght-eyed, whlle-skitmed Eurupeatr with reddish-btond tralr who tuere him a blond, bluezyed daughter whom Cheops gave in merriage to a European known as Didoufri who solormed the calendar and redogigned his pyramid. Other Egyptologisis suggest that Cheops' wile, who is representod as a blonde in the Giza lomb of her daughter Meresank 111 , may be merely wearing a wio. Such divergencies give a silont rdea of the ceneral lack or concurrence among historlans of Egyot. But there is no doubt val the Egyoilan sothic catendar one-quarter day longor. Tho extra quarter doy caused the soth:c Now Year to lall back ono full day ovory four years so hat each and every day of ine civll calendar coincided whit ite Netw Year over a petiod of 365×4, or 1460 years, unlil the New Year once more fell on its original suiy i9. Hence was
generated what wes known as the sothic cycle of 1460 years.
The double dating of scthic and oivil yoars apposas in many
Egyptlan dooumonts, so that it has boon possiblo to ccconstruct the years in which the sothic new year coincided with the original now year and estabilsh that sothic cycles began in A D. 140, 1320 B.C., 2780 B.C.. and 4240 B.C.

Muck and others betiove the foundation of the sothic calendar occurred it the 2780 eycle, but Schwaller de Lubice is convinced from his study of anciont toxts and hierogtypha that the year was 4240 . He says that tradition always placed the heliacal rising of 4240 on The main obtection to such an early date is the $s 0$ from of Egypiologists that the anclent Egyoilans were not yet equipogd of Egyplologists tiat ihe anclent Egyoilans

That the Egypliens handied astronomicol cyclos of even groator duration is indicated by inseriptions racently lound by Sovlot archeologists in newly opened graves duting the potiod of their work on the ASwan Dam. Mere the cycles appeat to cover periods ot 35.525 years. winch woutd be the equivalent of 25 cycies of 1487 years. The apparent discrepancy of one year in this recording of ola cive cyclo of 1461 ygars. According to Muck thero ware throo main cycles one of 365×1 - 1160 ; snother of $1460 \times 25=36,500$; and a third of $36.500 \times 5=182,500$ years.

Search inside

Schwaller de Lubicz in his Le Tomple de l'Homme maintains the pharaonic Egyplians adopted neither the sidereal nor the solar tropical year, but a Sothic year based on the cycle of the fixed star Sirius, which is exactly 365.25 days, According to this archeologist and philosopher, who spent twelve years at Luxor measuring and studying its temples, tombs and hieroglyphs, the mere fact that the Egyptians were able to note that Sirius is the only fixed star with an unvaried cycle of 365.25 days denotes an extremely long period of previous caroful observation.

From the texts it is clear, says Schwaller de Lubicz, that rong after the heliacal rising of Sirlus was no longer a visible phenomenon. It continued to be accuraiely computed by the priests of Heliopolis, who then broadcast their observations to the other temples of Egypt, there being a difforonco of as much as 4 days between the heliacal rising as noted at Thebes and at Memphis.

Muck suggests that to dramatize the importance of the 1460 cycle the ligure was built into the pavement around the Pyramid of Cheops in such a way that a cortege of priests dressed in white could liturgically miarch round the pyramid ryinmicalty counting out 1460 paces-which were subdivided into 25 inches, and again subdivided by 5 .

By coincidence, Muck's pace of 25 inches is the same ength as Newlon's and Piazzi Smyth's sacred cubit, one hundred of which form the side of an English acre.

One incontestable deduction was drawn by Sctwallerde Lubicz from the existence of the sothic calendar and the shifting of the annusl feativals of the civll calendar: the ancient Egyitians must have been cognizant of and able to measure the phenomenon known as the precesslon of the equinoxes.

To obtain a simple picture of the precession, an earth obsorver in the northern homisphere should be looking due east just before sunrise al the spring equinox. As the dawn ints the sky the observer will see a constellation on the eastern horizon: nowadays it is pisces. In 2000 B.C it was Aries. In 4000 B.C. it was Taurus. In A.D. 2300 it will be Aquarius.
The entire circle of the zodiac appears to be slipping back in relation to the sunrise al the equinox. at the slow rate of about 1 degree In 72 years: 30°. or one constellation. in 2160 years; and 360° in 25,920 years.

This precession of the equinox is said to have been discovered by Hipparchus in the second century. But a number of anclent representations of the zodiac bear the note: "The Bull marks the beginning of spring." This has been interpreted to indicate that astronomical observations of the

constellations at the equinox were being made at least as early as 4000 BC.

The phenomenon of the precession was not explained till Newton postulatod that tho earth's tited axis was wobbling as it spun, causing the celestial pole of the earh's axis to draw a slow circle in the heavens around the lixed pole of the solar system. the pole of the ecliptic. To an observer on earth watening the sunrise at the equinox, this slow circling has the effect of making the equinoxes occur aboul 20 minutes earliet each year in relation to the zodiacal constellations then visible in the sky.

To have figured out the slow rate of twe precession of the equinoxes, the ancient Egyptianis must have had an appropriate system and oquipmont. According to Cotsworth, o devise an accurate star calendar to record the apparent devise a the stars around the heavens, someone frst had deve structer would provide a pertecly oriented la the obsention plation to fixed meridian tor the observation of stars in relation to a fixed point on earth
According to Muck, to have an accurate sun calendal. with which to establish the solstices and equinoxes, someone would have had to build an enormousiy high obelisk.

Sir Gaston Maspero, director of the Department of Antiquitics of the Cairo Museum, found a curious hieroglyph in inscripllons around Saqqara for which he could tind no explanation an obelisk atop a truncated pyramid, with a solar disk balanced on top of it. For Cotsworth he kindly made a drawing of it.

To Cotsworth the similarity of Maes.Howe, the Silbury Hill Maypotes and the obelisks atop a mastaba or unfinished yramld was Inescapable Only, how did this lit with the Pyramid of Cheops?

XIII. ASTRONOMICAL OBSERVATORY

Richord Anthony Procior.

That the Great Pyramid had originally boon designed as an astronomical observatory and that it had contained reproductions of the celestial spheres was repeatediy reported by Arab historians: yet none could put torward a sensible solution as to how its steop polished sides could be climbed as an observatory, or its interior passages employed for observations; that is, until the appearance of a book shortly before the turn of the century by the British astronomer Richard A Proctor, ealled The Great Pyramid, Observatory, Tomb, and Temple. Froctor found a reforenco in tho works of the Roman neoPlatonic philosopher Proclus to the effect that the Pyramid had been used as an observatory before its completion. Analyzing the report, which appears in Proctus's commentary on Plato's Timeaus, Proctor thoorized that the Pyramid might have made en exceflent observatory the time it had reached the summit of the Gsand Gallery. hich would have given onto a large square platerm where he prlests could observe and record the movements of the e priesis could Pavenly bodies.
Proctor's theory was so shoclingly simple that it was quickly ignored by academic Egyplologists, who were as skepilcal of its astronomical value as they were of the value of Stonenenge or the other megalithic observatories scattered about Europo.

In order to create a firm body of astronomical data, the ancients needed a true merldian on the solid earth from which to extrapolate a meriolan across the heavenly vault, so as to detect the precise moment when stars, sun, planets and moon transited this moridian in their apperent rotation through the heavens.

In Proctor's analysis the builders ol the Great Pyramid had accomplished such a feat by building what he, as a modem astronomer, considered the only sensibla inslrumen short of a groat modern telescope.

On the Giza plateau, in the heart of the Great Pyramid, they lirst tuilt a huge graduated slot. perlectly aligneo on the merldian. Through this slot they could observe the apparent movement of the panoply of stars, accurately noting their several transite
Proctor describes in detail how the ancient arciltects would have gone about bullding such an observatory. To

Search inside

Indian astronomical observetory arooted at Deilhi by the Manaislan of Jalpur corississ
of a seloot tiangular
structure which casts a sladow onto an arc of minules and sceonds hours.

Anotrar incian observatory at Benares. known as Yantra. povided n xed angles to che
the positton of the stara.

Meridian slot for obsarving the transtl of the slars.

The stars appear to be carriled around the pole of ture hieavens as If they woro fixed points in the interior of a hollow revolving sphere. It is therefore pos-
sible to dotermino the position of the pole, even though no bright star actually occuptes That point. Any bright star close to The pole reyolves in a small
circle whose center is the polo.
obtain a true north-south fine for their terrestrial meridian hoy would have observed across tho tops of a couple of upright plllars whatever star was closest to the celestial north pole (the point around which the stars appear to whee in their dally motlon). then found the star's cuimination. or the top and bottom of its circular palh. A line through these opo point, which could be measured with an ordinary plumb wo poilla we north; and any such northern star would line, would be ince nall any ouch oll
, as all move in a smair circle round the celestial pole.
Following the suggestion of Sir John Herschel, Proctor onciuded that lf migminave olpha Draconis, which was $3^{\circ} 43^{\prime}$ from the pole in 2160 B.C. and again in 3440 B.C. The French astronomer A. Poge suggests that the ancients could have used XI Mizar of the Greal Bear any Itme before 1500: but alpha Draconls fits the rest of Proctor's theory quite adroitly.

The question of the mothod of orienting the pyramids has been the object of a detailed study by the Egyptologist Zbynek Zaba in a recent monograph for the Gzechoslovaklan Acastemy of Sciences entitled L'orlentalion astronomique dans l'ancionne Egypte et la précision de l'axo du monde. Far from considering the pyramids monuments to the

megalomaniac pride of some theocratic despol, Zaba considers them monuments incorporating the culture, science and technology of the timos In which they were built.

The documents adduced by Zaba prove beyond question inat the Initiat operation in erecting an important structure in Egypl was the ceremony of the "stretching of the cord," by which, through the observation of the culmination of some circumpolar star, the north-south direction was determined and marked out on the ground.

An inscription, Iranslated by Johannes Dûmichen, describes this royal ceremony: "Looking up at the sky at the course of the rising slars, recognizing the äk of the Bull's Thigi Constellation (our Great Bear), I establish the corners of the temple. . . ." Dlimichen says the word $\begin{aligned} & \text { at } \\ & \text { represents }\end{aligned}$ the star's culmination as it passes the meridian.

Having transforrod a true meridian from the sky to the ground, the ancient architects, says Proctor, could have begun to consolidate this line by digging it into a descending passage inrough ilie live rock. using their polar or circumpolai star to guide the tunnel downward at precisely the angle of

Such a cream-while tube, says Proctor, would have given perfect stablitty in this lundamental directional line, and the longer the passage the truer its orientation. t

For alpha Draconis, al $3^{\circ} 43^{\prime}$ from tho polo, to have shone For alpha Draconis, al $3^{\circ} 43^{\prime}$ from tho polo, to have shone would have had to be incilned at an angle ol $26^{\circ} 17^{\prime}$-just the angle of the Descending Passage beneath the base of the Greal Pyramid.

Proctor points out that there would have been no question bout the advantage of taking the lower culminetion of guci a star in prelerence to its upper one: using the botiom of lis circular path as a fixed point would have required far less depth of boring to reach a point directly beneath the center

The mestian, or great circle through the earin's celestiat poles, is the plane in which alt itse lieaventy bodies culminate, or obtain the highest point in theil passuge midway from the eastern have a high and a low culminating point on the meridian sbove and below the celestial polo.
Tho stivantage of digging such a tunnot is obvious whon compored wilh what would have been neaded to achieve tha same resuli aboveground. Someone woula have had to hotd a plumb line 100 yaros hioh slanding at 8 distarice of 200 yards trom the obsenver. he polar war by night at a sient distance of 260 yords - without bonofit ol a tolascope.

How the contral point of the How tha coniral point of the
pyramlo base could be located by knowing the angle of the Descending Pasegge.

Roflecting pool at the juncture of the Descending and
of the proposed building, which was the next object of the operation

The theory provides an explanation for the quite extraordinary straightness of the walls of the Descending Passage, as measured by Petrie, who was astounded to find a mean variation from a central axis along the entire length of 350 feet of less than $1 / 4$ inch in azimuth-from side to side-and only 1 inch in alttude-up and down. In the part arest the aperture, which was to be the most important, the exactness is even greater, the mean erros amounting to less Ihan $1 / 50$ inchl

Once the ancients had measured the length of the Descending Passage and lis angle of descent. It would have been simple, by elementary irigonometry, to locate a central spol immediately above the end of the Descending Passege as a center for tho proposed pyramid-even it this were on roughly elevated ground.

With a ceniral spot and a tive meridlan, the archilects could set about laying the socket holes for a square base and begin to lay courses on a loveled plafform. To obtain rue levels, Proctor surmises thal the ancient bullders used wruter troughs in coniunction with the lighe rays trom the sla

By contihuing the tunneting up through the lower tiers of the growing pyramid, they could maintain a precisc orientation for at least the first ten courses, or until the tunne debouched from the narrowing side of the growing pyramid

Thereafter thelr polar star would nolonger serve directly, and a new system would be needed to continue the meridian alignment upward in the Pyramid. For this, says Proctor, the bulders hil upon the idea of creating an Ascending Passage at precisely the reflecting angle of another $26^{*} 17^{\circ}$. By plugging the Descending Passage and tlliing it with water, they could rellect the polar star back up an Asconding passage and continue to kosp the pessage truly aligned and the buitding level as it rose another score or more ot courses
For the Descending Passage to have held water, says Proctor, Its masonry at the point ot juncture would have had o be of hard rock, carefuliy joined. For no othor apparent eason, the stones at this particular point are quile different from the rest of the passage, much harder and smoother and more finely jointed. In fact. the feature escaped observation IIII 1865.

As Proctor expressed it in his Victorian style: "By using he known properties of liquids combined with the known property of light rays, the ancient bullders were able to orient and level a bullding 10 a very greal heighl."

But to what purpose? Of a sudden the constricted Ascending Passage changes to an overlapping gallery 28 feet
\pm
Search inside
high, in no way essential. or even desirable, io increase or maintain accuracy in orientation for the mounting courses. Yet so extraordinary an architectural design, so carefully executod, must, says Proctor, have served some definite purpose.

Analyzing the problem Irom the point ol view ol the astronomer tather than the architect. Proctor came up with an answer. Had an ancient astronomer wished for a large observation alot precisely bisected by a meridian through the north pole, so as to observe the transit of the heavenly bodies. what would he have requested of an architect? A very high slit with vertical walls, says Proctor, preterably narrowor at the top, a gallery whose aperture, thanks to the reffected light of the polar star, could be designed so as to be exactly bisected by a true meridian.

Looking up through such a stot. an observer could watch the passage of the entire panoply of the zodiac, easliy noting tho transit of each stat across a perfeot meridian-procisely what is done today by the modern astronomer when he sets his transit clicle to the vertical merldlans. As Proctor points out, such a Grand Gallery might well be described as the only very accurato mothod available for proparing an accurate map of the sky and of the zodiacal cycloramebelore the invention of the telescope in the seventeenth century of our era.

With various observers in the Grand Gallery, placed one above the other on the slanted incline, the southing-or transit across the meridian-of every key star in an arc of about 80° could be observed with remarkableaccuracy. As Proctor points out, the most important object of transit observation is to detormine the oxact moment at which the observed object crosses the meridian. This might have been best accomplished by noting the moment when the star was firsi seen on the eastern edge of the vertical sky space. and firsi seen on the eastern edge of the vertern edge; the instan midwoy between these two would be the true time of transit.

Proctor surmises that someone in elther the Queen's Chamber or on the liat platform of the truncated pyramid above the Grand Gallery could keep time by hourglass or watar clock in coordination with the observers in the Galiery, who would signal the beginning or end of transit across the Gallery's lield of view.

A contaner with a small ho'e which orips one drop al regula intervals makes a satislaciory timer. Anctent Chinese astronomers had a systern of thee such contalnats in a series to minlmize the olfect of resistance.

The Trensit Circlo, Royal observatory, Greenwich.

By looking down the Descending Passage into a rellect ing pool, an ancient astronomer oould have noted the exact second of a star's transit, because only at that moment will is tays be reflected. The very same system is used today the US. Naval Onservatory in Washingion, D.C. where the U.S. Naval Observalory in Washingion, D.C.. where ho daily transit of stars io
che slope of ol mercury.
The slope of the Gallery and the corbeling of its walls woutd also have made it remarkably easy to note the decliriation of a star-its distance above or below the celestial equator. By combining the observations made by severa of what Proctor calls "watohmen of the night," stationed at different levels of the Grand Gallery, a very close approximation of true sidereal time could have been obtained. For such observars to function eftectivery, cross ramps or ectining benches of some sort would have had to be positioned at different levels of the Gallery.
in support of this theory, there is the series of 27 obiong holes cut vertically along the walls and Into the ramps to a epth of 8 or 11 Inches. They served to hold some son of ealfolding across the Gallory. Proctor postulates that inere were benches for observers al regular intervals up the Gallery.

The fact that the walls of the Gallery are corbeled aroce thar ue valls of une Gallery are corbeled observatories, whose top stones could be readily removed, and that cach of the roofing stones of the Grand Gallery

The Grand Gatery showng
The Grand Gatery showing
the series of alots along the
ascending ramp and
individualily remoyable roor
slones.

Intorior of the Grand Galiory (about one-quarter of its length) showing how 11 could
hava boen used to observa the stars clicling in the southern sky.

Search inside

Ancient polar astrolabo.
The truncated pyramid, as depicted by Proctor, would have made all obsseivallon platiorm 142 tool high and 175 leet square.
The cardinal points, of compass roco. could havo boo
marked by upright posts on the pesiphery of the platiorm. To locato the tiking and setting of slars east and nest, azimuth observers could ocoupy the conter of the square lrom vihich they could command the entite
was independontly tomovable (none presses dovin on its neighbor) may indicate that by the removal of these stones almost as much again of the northem arc of sky could be bserved as was visible ot the southem sky throuon the aper upper end of thars could be pinpointed by the removal of single stones.

Proctor surmises that the method used 10 delermine the declination of a slar Involved a very pracilcal use of the oud grooves thal appear along the walls of the Gallery At approximately half the height of the Gallery. just above the third ovoriap on oach wall, a narrow groove runs the whole ength of the gallery, 6 inches wide and $3 / 4$ inch deep.

Proctor suggests that horizontal bars cariyling vertical rods at suitable distances. perhaps vith horizontal lines on them, were held between these grooves, and could bo slid o any convenient position. The vertical rods could also have been adjustable.

To locate a star correctly, the transit observers would also have to determine what is callad its "right ascension," or distance measured parallel to the equator from a certain assigned starting point on that circle. Knowing the time of transit, it is simpte to position the celestial object in tis "right ascension."

By placing observers not only in the Gallery bul outside at the cardinal points of the great Iruncated pyramid, Procior says that the enilire visible sky could be accurately plotted. The ancient astronomers, says proctor, would doubiless have made even more observations off the meridian, once they had established the meridian observalions as their guide marks. They would certainly have made multitudinous observations of the risings and seltings of stars at the

horizon, and especially their heliacal risings and settings just belore dawn and just ather sunset

Proctor suggests that there were at least thirteen observers for azimuthal directions around the horizon, whose work could be combined with that of at least seven transit observers at different levels of the Grand Gallery.

The azimuthal observers would be supplied with astrolabes, armillary spheres of refarence, direction tubes, or ring-carrying rods. Togelher with the transit watchers they would be able to make observations which. in Proctor's opinion, would be interior only to those made in our own time with telescopic adjuncts.

George Sarton, prolessor of the history of science al Harvard, says the astronomical ability of the early Egyptians "is proved not only by thelr catendars. tables of star cuiminations, and tables of star risings, but also by some cuminations, and tables of star risings, but also by some
of their instruments such as ingonious sundials or the combination of a plumb line with a forked rod that enabled them to delermine ine azimuth of a star.

Proctor adds that for a greater knowledge of the sun's motion, the Grand Gallery slot could have been used to bettor olfoct than an obelisk or a sundiat by noting the sun's shadow cast by the edges of the upper opening against the walls, sides and lloor of the long Gallery to make observations of the sun more exact. Proctor envisaged the see of screans: by piacing an opaquo screen at the uppar use of screens: by placing an opaquo screen at the upper ond or wa Gilery with a mell aperture to receive the sun's ghl upo a sme whit sulace riont and io the direcilon, a much magnified image of the sun would be formed on which any sunspot could hardly have failed to appear. The movement of the spots would have indicated the sun's rotation on its axis.

The moon's monthly path and all lis changes could have

Search inside

By placirg the gatery stithily south axis of the Pyramid the ancient astronomers coulo make their observalions from the cenier of the inncatod
square, and a snomon, or squale. and a enomon. or
shadow pole, could be raised in dead centior. That such a sauare was tile protoryon
ior easrological as well lor astrological as well 85 astronomicss compulations
is stitkingly illustratea by the formal for horoscopes which porsisted into tho
seventeenth century.

The iwatue celestial houses or the zodiac accotding
astrological authora.

Horoscopes prepaled by Koplor.

Noon bag.

Hgia migtt.
equinox that the whole stellar caravan was returning to ils original position just a fraction later-hence each year the equinox itself appeared to move forward. By line observation of the oircumpolar slars, the ancient astronomers could have measured the angle of this precession and deduced its rate to be about ${ }^{10}$ in 72 years, making a grand cycle of 25,920 years to cover a full circle of 360°.

Proctor's astronomical analysis of the Grand Gallery was discounted by Egyptologists on the grounds that thoy had no evidence the ancient Egyptians were capable of making accurate astronomical observations. But in 1934 Proctor received sirong supporl from another protessional astronomer, Eugene Michel Antoniadl, who was also an Egyptologist, attached to the Egyptian Observatory of Medúm, in a serious work dealing with the various branches of anclent Egyptlan astionomy.- Antoniadl agreed that the Great Pyramid had been used as an observatory before the closing of its inner corridors. He also agreed with Proctor's theory of the alignment and use of the Grand Gallery.

Astronomer E M. Anionizal added a refingrrent 10 Proc ancients mighl have used a temporary tiesile to tielp stan the elignment of the Descending Passage. however, such a trestle would
have had to bo 300 fogt nigh have had feet long. with a slent helght of 780 feet morely to serve a function that could be beller periorme by digoing the Descending
Pessage dircelly. It is more pessage dircclly. In more
likely the buiders avoided the scation.

Antoniadi figured that the Grand Gallery would hove permitted priests to observe 80° of the sky. He says they should have been abie to note the declination ot all vislble stars from -50° below tho celestial equator to $+30^{\circ}$ above it, and that with the use of clepsydras (water clocks) thoy h. auld havebeen able to measure hour angles and deduct should have beenable io casur hour
these iwo data all itat is
These two data are all that is required for constructing a star map or planisphere. "From a star map," says Lancelot Hogben. "Il was a very short step to the recognition that the Earth itself could be divided Into similar zones with simple relations to the ilixed stars-hence the first world maps with latilude and longitude."

XIIII. ASTRONOMICAL TEMPLES OF EGYPT

In his avant-garde book The Dawn of Astronomy, written at the turn of the cenlury, Sir Norman Lockyer minutely demonstratod how the Egyptians built and usod their temples lor astronomical observations from the very remotest anliquily. Lockyer showed how Egyptian solar temples were so arranged that at sunrise or sunset on the longest day of the year, a ray trom the sun shot through a skilltully contrived passage into tho dark interior of the inner sanctum of the temple. The illumination from the sun was cut off by means of pylon screens so that a concentiated shaft of light cu through the gloom.

Lockyer was the first English astronomer to conclude hat Sienehenge had been accurately aligned in about 1680 B.C. 10 catch the first gleam ol the midsummer sun at ts solstice, a lact which was recently corroborated on the basis of computerized data by the astronomer Gerald S Hawkins in Stonehenge Decoded.

Both ol Lockyer's conclusions were ignored.
The dilference between the megalltic and the Egyplian systems lles in the tact that anyone who can set up a circle of well-placed stones with a sighting avenue can note the farthest points north and south on the horizon where the sun rises at the summer and winter solstices; by taking the haliway mark along the semicircte ef stones, the day of the equinox, when the sun is due east at the equator, can be geometrically fixed. To obtain a more precise tength of the year-to within a matter of hours and minutcs--requires a more sophislicated system.

Lockyer-whom Hawkins describes as "an extraordinary man whose true worth as an astronomer and theorizer concerning the history of astronomy has not yet been adequately appraised"-shows how the esthetically ncomparable Egyptian temples scattered along the Nilte viere astronomical instruments designed like a modern telescope aimed at a specific point on the horizon.

Within the Egyptian temples the light of the sun, or other heavenly body, was funneled between two row's of delicatei) caved columns which ran through a chatn ot variously dimensioned halls, like the light of a heavenly body being unneled through the gradually narrowing diachraams of a telescope.

Templo ot Luxor (above) drawn by a member of Napo leon's expedition, showing a
low ol columns oriented os an astionamical observalon Temples usually contizinect a pylon, torocourt hypostylo
hall, and ssmctuary.
(Overicat)
Colonnade :o the temple of Amon Ra at Karnak as it wee lscovered by members of Napoleon's expedition.
ockyor lound that tho temple's axis was accurately oriented to the summer solstico and considerod II beyond all nuestion the most majes
tho wolld."
Reconstruction of the temple of Amorr-Ra at Kamak showing how the cotonnade was aimed like a tolescope
toward the sunset of the summor solstice. This romanticized etching was produced by the French de TEgypre.

The longer the temple's axis, the longer and narrower the beam, and the greater the accuracy in moasuring it. The darker the sanctuary, the more obvious the gath of light on the end wall.

The purpose, says Lockyer, was to narrow the beam of tight to the point where it could indicate tio prociso moment of the soistice.

According to Lockyer, a beam of light coming through a narrow passage some 500 yards all the way to a properly oriented sanctuary would remain there no more than a couple of minutes, then pass away. What's more, it would come in a crescendo and go in a diminuendo with an observable peak at the precise solstice.

This would enable the priests 10 determine the length of the year to wilhin a minute, or four points of decimal-or 365.2422: an othenvise very difficult feat because the sun appears to linger several days around the point of solstice. and lis movement of a mere $50^{\prime \prime}$ a day is almost Impercepilble without some refined instrumental aid

Lockyer, who went to Egypt regularly in the summer holidays, found that the sun temple of Amen-Ra at Karnak wes built in such a way that at sunset at the summer solstlce -the longest day in the year-the sunlight entered the temple and penetrated atong the axis to the sanctuary. In Lockyer's words it was "a scientific instrument of very high precision, as by it the length of the year could be determined with the greatest possible accuracy."

Extrapolating backivard from the present ortentation of the building, and taking into account the small but gradua shift in the till of the axis of the earth, Lockyer applied the

Rendering of the tempie at uxar by Schwaller de Lublcz showing threc succossive
changes in orlontation.

Chiseted orientation life on subllooring of the temple Luxor noled oy Scliwatlei de Lubicz. The line was then hidden from view by supermposed tinishea mooring.

system he had used for Stonehence and estumated the temple to havo boen originally laid out about 3700 B.C.

Lockyer found sun temples oriented to catch the sun at he solstice or equinox. and slar temples oriented to frame a star rising on the horizon just betore surrise at the sotstice or equinox, so as to give warning of the imminent solar event

Horodotus describes two pillars of gold and green stone ine temple of Tyic which shone at midnight. According to Lockyer, "there can be little doubt that in the darkened sanctuary of an Egyptian temple the light of Alpha Lyrae, one of the bnghtest stars in the northern heavens, rising in the cloar air of Egypt, would be quito strong enough to throw into an apparent glow such highly reflecting surfaces as hose to which Herodolus refers."

Maspero suggests that the priests were not above "plous rauds" accomplished by means of statues which were nimated, spoke, moved and acted. For those not in on the ecret, the priests may have achieved quite stunning effects y having a large fowel In the breastplate of a slatue suddeniy and mysterlously sparkie with light

Lockyer realized that temples oriented to the sun could provide a useful calendar lor inousands of years because the bir of the eant's axis shitis no more than a degree in six or seven thousand years. But temples oriented to stars could unction only for a limited 200 or 300 years because each year the rising or setting of stars just before suntise or after sunset at the solstice or equinox viould occus a little laler because of the precession of the equinoxes. The stars' lag behind the sun along the circle of the zodiac-a barely oticeable $1 / 72^{\circ}$ oach yoar-could becomo as much as 3° in 200 years, superannuating the usefulness of the temple. The tempte would then need to have its axis reoriented, or nother temple would have to be buill. "This change of direction." says Lockyer, "is one of the most striking things which have been observod for yeare past in Egyptian emples."
kuxor, for Instance, has four delinite, well-marked hanges in orientation. Lockyer measured temples at Kamnak and lound they woro changed to match the precessional change of the stars' doclination so that the priests could continue to observe it. Pytons were added, more courls were ded. the sanctuary was moved eastward, the front of the emple westward.

As Masparo pointed out, "all the Ptolemaic temples and ost of the Pharaonic temples have been reconstructed' during the period of their use.

Gunther Martiny, who tabulated the orientation ot Assyrian Emplos for which the dates of foundation can be established

(the oldest boing about 1800 B.C.), found that tho orientations also varied according to the angle of the precession of the equinoxes.
Nevertneless, says Lockyer, a temple once orlented to pack up the heliacal rising of a star could be reftited al a tater time to mark the rising of some other hoavenly body.

Lockyer drew up a stelar map with the positions of all the great stars aiong the sun's zodlacal path lor the last 10,000 years, and he named a series of stars which could have been used to herald the solsticial dawn in oifferent temples at different periods. In the courec of conturies, according to

Roconstruction of the temple compound at Katnak showing difforont buildings ond col ennades.

Lockyer, tho Egyptians oriented temples to alpha Ursa Major, Capella. Antares, Phac!, and atpha Centauri. As early as 6000 B.C. they may have used Dubhe before it became a circumpolar star. and Canopus before 6400 B.C

Profossor Lockyer says that the oarliost civilization in Egypt built temples at Annu or Heliopolis oriented to the heliacal rising of northern but noncircumpolar stars at the summer solstice. However, "the Greai Pyramids were bull by a new invading race representing an advance in astronomical thought" who used northern stars on the meridian and stars rising due cast at the equinoxes.

The subsequent break in Egyoilan history between the Sixth and the Eleventh Dynasties is associated by Lockyer with conflicts between these and two other races, which ended in a victory of the representatives of the old worship ended in a victory of the representatives of the old worship north-star and south-star cults combined against the equi-north-star and

Lockyer's deductions about the refurbishing of temples was to rekindie interest in the zodiac of Dendera found by Napoleon's General Desaix, and subsequently dynamited from the ceiling of the temple. It was purloined after a series of incredible adventures, to be sold to Louis XVIII for 150,000 francs and ond up on display in tho Louvre, whero it rosides today.

It was clear to Lockyer that there had been two temples of Dendera, one dedicated to Hathor and the other to Isis, both mythological personifications of heavenly bodies. Lockyer says the evidence is overwhelming that these two temples were also horizontal telescopes with the same number of pylons gradually getiling narrower toward the holy of holies, so that a beam ot horizontal light coming through the central door might pass uninterruptedly into the sanctuary to mark the rising of a celestial body. The columns, says Lockyer. shielded the eye from the sunrise light, so that the rising could be precisely indicated. According to Lockyer the present temples of Dendera were renovated in Piolemaic times, but were buift on much older sites,

The French astronomer Jean Baptisle Blot staked his academic repuration on his analysis of the circular zodiac. academic repuration on his analysis of the circular zodiac. that it had probably been copied from older drawings mado that it had probably
on papyrus or stone.

Lockyer confirmed that the isls temple had been directed at Sirius in 700 B.C., when Sirius rose "cosmically." or in unison wilh tho sun, at the Egyptian now yoar. But Lockyer quoted an old inscription which described a temple of Hathor at Dendera In the time of Khufu (Cheops) In the Fourth Dynasty (which he dated at 3733 B.C.) "When the star shone into the femple and mingled with the light of her father Ra."

Another inscription In a crypt of the temple indicated it had been buill according to the plans of Imhotep, son of Ptah, who was ile fabulous architect of the Third Dynasty King Zoser.

In Lockyor's opinion tho temple of Dendera may have been rebuilt at least threc times since then, once in the reign of King Pepi I (which Lockyer gives as 3233 B.C.), once again by Thothmes III in 1600 B.C.. and finaliy by the Ptolemies about 100 B.C

According to Lockyer the temple may previous!y have been directed at Dubhe, which ceased to be circumpolar about 4000 B.C., and belore that at gamma Draconis which ceased to be circumpoler in ebout 5000 B.C.

Egypiologists greeted Lockyer's astronomical theory about Egyptian temples wilth the same reserve they treated his theories about Stonehenge-which a computerized age has now shown to be correct. The Egyptologists objected to Lockyer's dragging in astronomy to straighton out the chronology ol history, and dismissed his theory 'with goodnatured laughter, advising the cobbler to stick to his last"; so The Dawn of Astronomy dropped out of slght and became vory hard to find, until reprinted in 196, by Giorgio de Santiflana at the Massachusetts Institute of Technology

At the time of publication only Sir Gaston Maspero was mpressed. He spent an Easter holiday at the sea sludying Lockyer's theory, and he grudgingly agreed that "except for mattors of detall I feel that on the whole your demonstration is conclusive, and in principle you must bo correct.

Schwaller de Lubicz flow supporls Lockyer's conclusion, saying there can De no doubt about the orlentation ol temples or the fact that the ancient Egyptians understood the precession of the equinoxes, which brought a new conprecesion inlo position behind the rising sun at the vernal equinox every 2200 years. The mere lacl that the cull of equinox every 2200 years. The mere fact thal the cult of
dates of these cults correspond with the equinoctial positions

Tenple of Hothor at Dendera, as drawn by Denon, showing to gamma Draconis before to gammo Draconis before
5000 B.C. according 10 Slı Norman Lockyer.

thterior of the temple of
ceived by the French savants.

The circular zodiac of
Dencera was on the celliris Dencera was on the celliris
of an upper rrom of the
lemple believed to nave been lomple balieved to have been used as an observalory. The outor dirclo of figuros,
moving countorelockwise Itike moving countorclockwise itike
the stars, represent the 36 docans, or 10 doy weeke of the Eoyptian year: the tweive arms of the supporting
of the yoas

of their constelations at the appropriate time-approximately 4000 and 2000 B.C.- Is conclusive in his opinion. Furthermore, says Schwaller, an emphasis on duality in the Predynasilc Perlod Indicates a cult of Geminl colncident with the dominance of that constellation at the vernal equinox.

Schwaller also agrees with Lockyer that the temple of Halhor at Dendera is bultt on the remalns of much older temples. To prove his point he produced a solution to the arrangement of the constellations in the circular zodiac which has been such a problem to archeologists for well over a hundred years. Schwaller shows that the zodiac discovered by General Desalx was Indeed carved In Ptolemaic times, but incorporates a palpable demonstration

Zodiac showing the overlap of the circult of the earth's celesilal pole around the pole different datas in the past.

The inner circle of spiraling
ifgures shows the zodiacal Mgurea shows the zodiacal constellations such as
(the Twins hiand in hand) and Teurus (the Bull) circting around our eclestial north pole correctly sliuated in the
Jeckal (or Litle Bear) which jeckal (or Lithe Bear) the celestial north pole of the ecliptic, sifuated in the breast of the Rippopotamus or
Drago. Schwatier's lines show that the zodiac of Dendera correctly indicatad earlier inslorical dates when alfferent constellations appeared in
the east at the equinox.
north pole. This circle is in a square orlented with the walls of the temple-or about 17° east of nottn Our north pole is correctly located In tho constollation of tho jackal, or Little Bear, as it was at tho time when the zodiac was carved, sometime about the first century B.C. But the zodiac also shows the pole of the ecliptic. located in the oreast of the hippopotamus. or constellation of Drago.

To Schwaller this explains tho spiral formation of the constellations. The mythological figures representing the constellations are entwined in iwo circles-one around the north pole and one around the pote of the ecliptuc. Where these two circles intersect marks the point of the equinox, or due east. The zodiac Ihus becomes a calender going back to remote antiquity.

A line due east, which runs between the end of the Ram and the beginning of Pisces, indicates the time when the tomple was robuilt, about 100 B.C. An earlier oast line runs right through the Ram, indicating a date about 1600 B.C., at the height of the Amonian domination, during the Twelth

Dynasty

A speciat hieroglyph on the ring of the zodiac indicates an oquinoctial line running through the ond of Gemini and the beginning of Taurus-the date of the founding of the emplre of Menes and the beginning of the cult of the Bull and the adoption of the new calendar, sometime in the third or fourth millennium B.C.

In other Egyptian charts of the constellations there ap pears the figure of a hawk-headed man holding in his outstietched arms a tine which ends against the ligure of the ox-leg, representing the consteltation of the Great Bear

According to Zaba this line held by the hawk-headed man indicates the meridian through our north pole. But Prolessor Livio Slecchini points out that Zaba did nol notice that this line always ends at a very specific position, al fimes with an arrow point, which divides the seven stars of he Great Bear into four and three. This lino, soys Stecchini, does not indicate the merldian passing through the north pole, but the mericlan passing through the pole of the elliptic. In Stecchin's opinion, the ancient Egyptians nol only understood the precession of the axis of the earth but considered the truo meridian the one passing through the pole of the ecliptic of the solar system. Lockyer added that the Babylonians had distngulshet the pole of the that ine Babylonians had disunguished the pole of the and the lattor Anu, The lattor Anu.
The evidence leaves littie doubt that the ancient Egyptians new there were iwo poles in the sky, a norsh pote, which hitted round a fixed pole, or "open hole" in the heavens; they also knew that this slow circling brought about the precession of the equinoxes. That the phenomenon of the precession was the matrix from which a thousand myths vere developed is abundanty illustrated by the woik of Giorgio de Santillana and Hertha von Dechend in Hamlers Mill.

There is no doubt in Santilitana's mind that the ancien Egyptians were aware of the precession. In his preface 10 a recent reprint of The Dawn of Astronomy. Santllana. then protessor of the history and phllosophy of science at MIT, romarked that "when a stellar temple is oriented so accurately that it requirez several reconstructions at intervols
of a few centuries, which involve each time the rebuilding of its narrow alignment on a slar." and "when zodlacs. like that of Dendera, are dellberately depicted in the appearance they would have had centuries before, as if to date the changes," it is not reasonable to suppose the Egyptians were unaware of the precession of the equinoxes.

Santillana was even more lorceful in his condemnation of modern archeological scholars who reluse to accept the idea that the phenomenon of the precession was known in Egypt thousands of years before it was rediecovered by Hipparchus. In Hamlet's Mill, Santillana accuses the scholars of having "cultivated a pristine ignorance of astronomical thought, some of them actually ignorant of the precession itself."

The procossion was considered the basic mechanism of tho univorse by the Egyptians, controlling not only astronomical phenomena but all human and blologlcal deastronomic
velopment

Since the beginning of history, the spring equinox has moved through Tsurus, Arios and Piscos, or almost onoquartor of a whole eyelo. Santillane points out that the Copernican system, which for us explains the precession as the wobble of the earth's axis, has stripped the phenomenon of its awesomeness
"But it, as it appeared once, it was the mystcriously ordained behavior of the heavenly sphere, or the cosmos as a whole, then who could escape astrological emotion? For the precession took on an overpowering significance. It became the vast impenetrable pattem of late itself, with one world-age succeeding another, as the invisible pointer of the equinox slid along the signs. each age bringing with it the rise and downfall of astral conngurations and rulerships, with their eanhly consequences."

Hawk-headed man hoding spear (pointing at ine Great Bear constellation) indicates tho moridlan through according to slecchini.

Search inside

XIV. GIEODETIIC AND GEOGRAPHIC LANDMARK

The strongest evidence that the ancient Egyptions were capable of accurate astronomical observations comes from the fields of geodesy and geography, sclences whose object is to determine the size and shape of the earth, and to locato landmarks upon it. Untll the development of radio and laser beams, coordinates of latitude and longitude with which io tocate a spot on this planet could only be obtained by means of accurate astronomical sightings. When a by means of accurate astronomical sightings. When a iemplo or obsorvatory or the remains of a city are found in a geographical location, either of latitude or longitude, both. specifically related to other established locations. it Is clear that its founders must nave been able to make the required asironomical observations.

Prolessor Stecchini-who obtained his doctorate at Harvard in the sclence of classical mensurallon-has now established that the anclent Egypilans nol only developed an advanced system of astronomy and mathematics, but an equally advanced system of geography and geodesy.

From ancient hieroglyphs, hitherto neglected, Stecchini has been able to show that from the earliest dynasties in the third miliennium BC, the Egyptians could measure latitudo to within a few hundred feet and do almost as well with longitude-a feat which was not repeated on this planet until the eighteenth century ot our era.

The ancient lexts and hieroglyphs vindlcate Jomard in full, and show thal at least as early as the unificalion of Egypt (ca. 2800 B.C.) the ancient Egyptians knew the length of the circumterence of the earth very precisely, the length of thelr cuuntry almost to lie cubit. and the geographical coordinates of all the main points in their reatm from the equator to the Mediterranean. To do so the Egyptians must hove been able to make astronomical observations with almost the exactness alforded by the modern telescope and chronometer.

From a twenty-year study of the mathematical and astronomical data containod in the cunelform tablets of the ancient Sumerians and Babylonians, Stecchini has derlved the evidence that astronomical observations of great

accuracy could be, and were. performed in Mesopotamia as well as Egypt in the third millennium B.C.

From his analysis of the pyramids and slepped ziggurats of the Middle East. Stecchint has emonstrated that they not onfy incorporate the basic techniques for projecting and mapping the hemisphere of the heavens but for mapping tho torrestrial hemisphere; they also reveal a high level of mathematics, capable of resolving and simplifying the problems of trigonometry.

Stecchini points out that Herodolus, who has been ridiculed by scholars for his reporied dimensions of Egypl and accused of having lied about his travels there, turns out to have described ancient Egypt with great accuracy in terms of meridians and parallels caretully worked out by ancienl Egyplian astronomers.

Stecchini found aglyph carved on the thrones of virtually all the Pharachs since the Fourth Dynasty which contained geodetic data and hence astronomical data of extraordinary subllety, enabling film to determine that the Egyptians used Ihree figures for the tropic of Cancer: a simplifiod ono of 24°, a prociso one of $23^{\circ} 51^{\prime}$, and one of $24^{\circ} 06^{\prime}$ required for observing the sun's shadow at the summer solstice.

The sophistication of the anclenis is demonstrated by the fact that they placed their observatory near Seyne on the island of Elephantine, 15^{\prime}-or half a diameter of the sun-north of the actual tropic because they understood that it was not the center of the sun but its outer rim which had to be observed.

The most important Egyptian text deciphered by Stecchini was a set of itroo identical hieroglyphs on the beck of standard Egyptian measuring rulers lound at the temple of Amon at Thebes, the geodetic center of Egypt since the Mlddle Kingdom. These, says Siecchini, give the clue to the exact dimensions of ancient Egypt.

Ludwig Borchardt, an ominent German Egyptologist, who first published the texts in an article in Janus in Vienna in 1921, assumed a prior/ hat the figures coutd nol reter to actual lalludes compuled astronomically, and did

Search inside

Knotted ropes beneath Pharaoh's throne ale used
to symbollzo tho union of Lower and Upper Eoypt at the thinteth parallel, where
the apax of the Dolta crosses the apax of the Dolta crosses
the prime meridian of Egypt. lust north of the Greas Pyramid.
Thiee pairs of stont horizorial lines at the bollom of the picture are symboe of
three distinct values given the anclent Egypuans to the tropic of Cancer, basio to the geodetic mansuration of Egypt. The central one of
these three Ines reprosented these three thes reprosented
the conventional taltude of the trobic at 24^{*}; the lowel line represented the actual latitude at $23^{\circ} 51^{\circ}$;
and ine upper ine a lattucde of $24^{\circ} 6^{\prime}$, which wes 15^{\prime} north of the true troplc, at Syene, where astronomical observätions wore mado.
not even bother to test them: "One must absolutely exclude the possibility that the ancients may have moasured by degrees." Succeeding Egyptologists also failed to compare the texts with actual parallels and meridians. Stecchini tound them to apply with astonishing precision.

The texts-which for stylistic reasons have been assigned to the Old Kingdom (third millonnium B.C.)-state the length of Egypt to be 20 atur from Behdet on the Mediterranean to Pi-Hapy (the apex of the Delta just north of the Pyramid of Cheops) and another 86 atur south to the First Cataract of the Nile.

This means that 106 atur would span an arc of $7^{\circ} 30^{\prime}$ from the Mediterranean to Syene. From a composite of texts and geographic evidence an atur is the equlvalent of 15,000 royal cublis or 17.000 of Jomard's cublis of 4618 meter Thls would make Egypt from Behdet at $31^{\circ} 30^{\prime}$ to Syene at $24^{\circ} 00^{\prime}$ a length of $1,800,000$ of Jomard's cubits, or 831,240 $24^{\circ} 00$ a length of $1,800,000$ of Jomard's cubits, or 831,2
meters. The Smithsonian Geographical Tables give the meters. The Smithsonian Geographical Tables give the
distance from $31^{\circ} 30^{\circ}$, to $24^{\circ} 00^{\prime}$ as 831.002 meters. Computdlstance from $31^{\circ} 30^{\circ}$, to $24^{\circ} 00^{\prime}$ as 831.002 meters. Comouta degree of latilude in Egypt would be 110.832 meters. Tho modern estimato is $\$ 10.800$ meters.

To obsorve the exact moment shadow as il reaches its farthost point north, at the summer soistice, the observ under tho northoin rim of the sun, 15° futher nerth than the line of the trople. Whan the tropic was al
$23^{\circ} 51^{\prime}$, the ancient Egyplians observed 11 at Syene at $24^{\circ} 08^{\circ}$. Today the tropic is at $23^{\circ} 7^{\circ} 7^{\prime}$ By astabilshing the moment solstice at the tropic. the correctly to compute the circumference of the earth by the
use of deep wells and obelisks.

The island of Elephantine in the Nilo near Syene, where the ancient Egyptians had an astronomical observatory and a
nilometor to gauge the flood of the Nile.

Search inside

Royal Egyplian cublt of
Royal Egyolian cubll of
Mcmphis. If was dividod Inlo
7 Memphis. It was dividod Inlo
7 palms of 4 fingers each. for a loial ot 28. The Dasle unt rom wisch this cubil is do fived is the foot of 300 millimeters. One and a nall
of these fect made a cubit of 450 millimel made dividod into 6 paims of 4 nngers, for a olal of 24 lingors. The roy cubit was obtained hy the
addilion of ong exita palin. for a lotel of 7 , or 28 fingera, the equivalont of 525
millimeters.
Stecchin! points out thet e Mesopotamia. Egypt and Greeca, beeause it allowed implo solutions to probleme 1 practical measurement
wilh a π of $22 / 7$, it was simpler to have a soplenary cubit: a square of sice 7 wos considered to thave a diagonal ol 10 , and a squa diagorial of 7 .

According to Stecchini, once the Egyptians were in possession of tho truo proportions of tholr country, they devisod a means of simplifying their geodetic data into a eography that was easily commilted to memory without ecourse to portable maps, using such obvious naturat entar as the cataracis on the Nile and the extremitios Ni Der tho Nile as goodetic poinis for rectangles and triangles with easily remembered angles.

The prime meridian of Egypt vras made to solit the country longitudinally precisely in halt, running Irom Behdet on the Mediterranean, right through an island in the Nile jusi northeas! of the Great Pyramid, all the way to whore it crossed the Nile again at the Second Cataract. ${ }^{\circ}$

To simplify the dimensions of Northern Egypt, the Egyptian geographers accurately marked it as a triangle exactly ${ }^{1-}$ deep, with its a pox whore tho Nile splits (just nort of the Pyramid of Cheops), lanning out $1^{\circ} 24^{\prime}$ east and est to where ils widest branches llow into the sea. This became an actual Δ-shaped della, whose angles were esignated by the shadows cast by the northeast and north wost cornore of tho Great Pyramid.

Southern Egypt was made 10 run precisely 6° to the Flsi Catarac! of Aswan on the tropic of Cancer. Two llnes drawn parallelto the prime meridian, starting at the side mawns of the Nile in the Della, running to the tropic, made simple rectangle of Lower and Upper Egypt.

Stecchini says that when this particular geodetic system rancient Egypt was estabilsheo. the tropic of Cancer was ai $23^{\circ} 51$; which corresponds to a place on the Nile jus south of the Firsi Cataract called Parombolo in Hellenistic imes. On the island of Elephantine-15' farther north-was the lamous "well," whose bottom was said to be completely

Close to the medilerranean the meridian may hava boon marked by a nothern pyramid. In 1800 the French Expedition saw the remeins of a pyramid neor Benha in the Delta, but its auporstructure
tias since disappeared.

The first cataract, near Syene on the Upper Nile, was labled
to have beon a land of the deat because ol the conclant roaring ol the waters over the outcroppings af granlic.
This anclent boundary of Southern Egypl was the source of the hard pink granite from wizch ine monolith beam of the Kirig's Chamber we many gieat obolisks, weigh ing as much as a thousand lona. Which wore sol up geodetic markers.

Mlumined once a year when the sun stood directiy over head at the solstice.

Were it possible to reconstruct expetiy when the troplc was at $23^{\circ} 51^{\prime}$ il would give a firm date for the establishmenl of the ancient system of geography: untortunately no astronomer has yet been able to calculate mathematically the exact rate at which the tropic has morod sinco anciont timos to its present $23^{2} 27^{\prime}$. Schwaller de Lubicz ligurcs it was al Elephantine between 2500 and 3000 B.C
citles and lemples. says Stecchinl, were deliberately ulli al distances in round figures and simple fraction oullt al oistances in round figures and simple fractions capital of Egypt was set near the mouth of tho Nilc at Behdet, right on the prime meridian, at $31^{\circ} 30^{\circ}$. This gave a length to Egypl of $1.8 c 0.000$ geographic cubits. Memphis. the lirst capital of united Egypt, was again laid out on the prime meridian and at $29^{\circ} 51^{\prime}$, precisely 6° north of the tropic. Tho northorn limit of the Two Kingdoms was set at $31^{\circ} 6^{\prime \prime}$, and the country was measured by a newer unit. the royal cubill, of which there were 1.500 .000 in the tength of Egypt.

The geodetic point determining the location of Memphis was callod Sokar attor tho god of orientation (whose name and locstion are prescrved in the present village of Sagqara).

Geodetic omphalos found by Reisner in the oreat temple of Amon.

which is exactly on the main axis of the meridian of Egypt, in tho necropolis of Memphis

As cach of these geodetic centers was a political as wall as a geographical "navel" of the world, an omphalos, or stone navel, was placed there to represent the northern hemisphere from equator to pole, marked out with merldians and parallols, showing the direction and distance of other and parallols, showing the direction and distance of other such navels. In thebes the stone omphalos was placed in the maln room ol the tem

To obtain such precision in their geodesy, says Stecchini, the ancients must have made romarkablo astronomical observations.

For the ancient Egyptians to have laid out an absolutely straightmeridian of 30° ol latitude trom the Medterranean to the equator, over 2000 mlles, and drawn two more, equidistant, east and west, ee boundaries of the countiy, must have required an enormous amount of personnel and careful astronomical sightings. Even more sophisticated was their method of establishing longltude, as reconstructed by Stecch ini.

With the aid of an elementary syatem of telegraphy. consisting of a series of beacons. the Egyptians, says Stecchinl, were able to note what star was at lis zenith at a certain moment, and llash the data, via a string of flares, to ot her observers so many degrees to east and west."
H. G. Wood, aulhor of ldeal Melrology, assumes that if the Greal Pyramid was orlginally an observatory, signal stations east and west of ll once existed whict are now in ruins or altogether lost. Wood quotes a Dr. Lleder's description of a little pyramid far to tho wost in the Libyan desert which could once be seen from tho top of the Great Pyramid as the sun went down, but is now lost

Traveling farther afield, the anclent geographer could establish his longitude with great precision on the basis of es:ablish his longitude with great precision on the basis of observed at the Pyramid. +
Fragmented data obtained from such accurate tables, says Stecchinl, percolated to the Alexandrine Greeks such as Eratosthenes and Ptolemy, who mixed the accurate data with tho inaccurately estimated coordinates of their own period, creating a hodgepodge of good and bad geography. it was not possible to disentangle and correct thelt work until the development of the chronometer in the eighteenth century of our era.

Because of the advanced geodetic and geographic science ol the Egyptians, Egypt became the geodetic center of the known world. Olher countries located their shrines and capital cities in terms of the Egyptian meridian "zero," including such capitals as Nimrod, Sardis, Susa, Persepolls, and, apparently, even the ancient Chinese capital of An-Yang.

All of these localities, says Stecchini, were set and oriented on the basis of the most exact sightings. The same applies to the centers of worship of the Jews. The Greeks, and tho Arabs.

According to Hebrew historians the original Jewish center of worslip was not Jerusalem, but Mounl Gerizim. a strictly geodetic point 4° east of the main axis of Egypt. in was only moved to Jerusalem alter 980 B.C.

The two great oracular centers of Greece-Delphi and Dodona-were also geodetic markers according to Stecchini.

- Fires such as were llghted by the Druids al the moment of the midisummer solsuce may nave been the orloin of the "midsummer firas" and the Beitane flires of May Day, described In The Goiden Bough.
1 secause every oosenvable star comes to the meridian of eveiy place on the globe once in 24 liours, Ihe interval whlch elapses
botween the same star coming upon the meridian of two different placee to the diflerence in tongitude of the two places.

Search inside

Delphi is 7° and Dodona 8° north of Behdet, the northernmost part of Egypt, on the prime meridian of Egypt.

The Moselm shilne of Mecca is 10° east of the western mertdlan or Egypt and 10^{*} south of Behdet. According to Stecchinl the sacred black slone of the Kaaba was originatly part of a set of four, placed in what ho calls a pyramidical triangle from which the trigonometric funotions of the shrine could be derived.

Islamic tradition stresses the point that the Kaaba was originally a geodetic center. The essential element of the Kaaba consisted of four stones marking a square with diegonals running north-south and east-west. The diagonal north-south with the northeast and southeast sides formed what the Egyptians called a pyramid. The angle formed by the diagonal with the southeast side v/as 36°, from which Stecchinl conoludes that the trigonometric functions of the shrine viere measuled along the northeast side.
The northwest slde of the bullding of the Kaaba is completed by a semicircular wall: according to tradition this semicircular wall existod since the vary beginning, Most likely, this was used, says Stecchini, as a sighling device.

To make a map prolecilon of the norhern hemisphere. the ancient Egyptians found a simple mathematical and geometrical means of reducing the curved surface of tho globe to a flat surface suitable for mepping, and vith a minimum of distortion: they used the stepped pyramid, or ziggurat. each face of vilch coutd represent a 90° quadrant of the hemtsphere, and each level of which could represent a mappable zone between two parallels of tatitude.

Professor Maspero describes the zlggurats of Mesopotamia as "miniature reproductlons of the arrangement of the universe." Protessor C. P. S. Menon in his Eariy Astionomy and Cosmology says of the ziggurats: "We can deduce that the shape of the Earth, which appears to have served as a model for the temples, was a terraced pyramid wlith comers pointing to the South, West, North and East."

Ziggurats at Ur, Urux, and Babylon reached a height of hree hundred feet. The ziggurat of Nabu at Barsipki was called the "House of the Seven Bonds of Heaven and Earth" and was in seven stages said to have been painted in seven Planetary colors.

The sophistication of the ancients, says Stecchini, is illustrated by the ziggurats of Babyion. These stepped "Towors of Babel," long a mystery to mankind, turn out to incorporate a series of Mercator projections, several thousarid years before the advent of the Flemisti cartographer.

For the purpose of mapping, the northern homisphere was reduced to a serles of tlat surlaces represented by the

Roconstruelion oi Babylonia lepped pyramid or zlogurat. ccording to y or ziog the ziggurat of Jupiter Bolus t Babylon had an ideal basis It the number 380 . In his ddeel Molrology it la described tilch each of the six uppo tages is 360 inches shorte han the one next below it: an the one next betow it: the baso sido was 3,600 inch
and the totat height of the structure was 3,000 triches. According to Wood, the ontir ystem of ancien: Babyionla etrology appears to have metrology appears
oean derived from 360×360 $\times 100$. or $12,980,000$.

faces of the stepped ziggurat. The area between the equator and the pole was divided into seven bands or "zones" as the Greeks called them. each diminishing in width 10 correspond to the shrinking degree of longitude. The base lino reprosontod the oquator, the first stop the thirtioth parallel. Thus, each façade represented a 90° quadrant of hemisphere.

Stecchinl says the limits of these four quadrants were establlshed with great precision. Egyptian texts, Greek mythology (including tho Argonautica and tho Odyssoy), and Greek and Roman writers from Herodotus onward unanimously agree in selting this western limit of the Mediterranean quadrant al $9^{\circ} 54^{\prime}$ East. Another limit, says Stecchini. was known as the Golden Ctiersonnesos, that is to say the peninsula of Malaya at meridion oge 54^{\prime} East at a point whese the equator cuts tho vicstern coast of the island of Sumatra.

Cunettorm tablets indicate that each level of the ziggurats had a specific area corresponding to standard units of land moasure.

Nineteenth-century authors illustrated the ziggurats as astionomical observatories, with bearded Babyionlans gazing from the batilements: but John Tayior malntained that such high terraces afforded no better vantage than the ground

On the other hand, a square or tubular sheft of severel hundred cubits, buit into their interiors, would have made first-rate telescopes for observing the skies. In Mexico the Pyramid of Xochicalco near Cuernavaca contains a tubular vell down which the sun shines perpendicularly without a shadow on a specific day of tho year.

Nineteenth.century ides of Babyionian astoonomers atop a zloguret, published by the French astionomer Camllie
Flammatlon. Flammarlon.

Sir John Herschel pointed out that "from the bottom of deep narrow pits, such as a well, or the shaft of a mine, such bright stars as pass the zenith may even be discerned by the naked eye.'

John raylor indicated the relerence in Ezekiel ($X X 1 X$: 10 and $X X X:$ 6) 10 a "Tower of Syene," suggesting that perhaps the famous well at Syene was inside a sighting tower.

Reconstructing the ziggurat of Babylon on the basis of he cunelform texi known as the Smith tablet. Stecchin! ostablished thal it rose in seven diminishing steps, each tace of which was smaller than tho one below it. For mapping, this allows meridians to cross the parallels at right angles, as in Mercator's projecllon, but avolds his distortion by shrinking each rectangular lace in proportion to the sirinking degree of longitude as it approached the pole.

Tho ziggurat of Bebyion, soys Stecchini, would nave deen Perilact rrigonometricaliy if
ho height of the firs three teps nad been as originaliy conctived: 30,48 and $551 / 2$ degrees, But the Babylonians arised the Ifrst stop to 33°, Babylon,
The cunattorm dascription of Ihe ziggurat, known as the dicates that each leval of the igguret hes an area correponding to standard units of and surlace. Parilculanly important in Mesopotamian latid surveying was the squar cubits-she of 60 double cubits the surlace of the ird slep.
rne siope angles at various heights also give important augles, such os $\sqrt{5}-1$, which is also theorporatod inio the Great Pyramid. Such triangles. and the number $\sqrt{5}-1$ in omumon practice laxen as he magic serios $1-2-3$) wor
undariental in the operalons of land surveying. Tho third, fourth ond filth stops of the ziggurat make tianoles with sides retated as anglo

In the original design, says Stecchini, the flrst step of the ziggurat was intended to represent the thirtieth parallel, but ziggurat was intended to represent the thirtieth parailel, but
in Mesopotamia it was raisod to 33°, tho approximato latitudo of Babylon. Thercafter the Babylonians made each step rise in units of 6° of laftitude This made il possible for them to obtaln an easily remembered cosine value for each step by simply dividing its length by two thirds.

As the Babylonians liked to count by sixes, with a hexagesimal ana soxagesimal system, the steps of the ziggurat rose in multiples of 6°. Futher to simplify their accounting, the degree of parallet represented by each step could be obtalned by multuplying the neight of each step by 6; e.g., $6 \times 51,2$ (first step) $=33^{\circ}$.

Thio system gave the B'abylonians an extremely simple way of remembering the trigonometric vatue of each parallel.

All they had to do was divide the length of each step by .668 (or $2 / 3$). Thus. $2 / 3$ of 15 (widith of first step) is 10.000 . which is the cosine value of the equator. Thereafter the operation produced a simple progression: $8.666,6.666,4.666$ operation produced a simple progression: $8.666,6.666,4.666$
$3.666,2.666$ for the cosine value of the angles indicated by

each slep.

The top siep, says Stecchtni, was rectangular instead of square, because the average of its sides gives 2.5833 , which Is the cosine of $75^{\circ} 01$.

XV. THE GOLDEN SECTION

In the Great Pyramid the Egyptians produced a system of map proiection even more sophlsticated than the one incorporated in the ziggurats

The apex of the Pyramid corresponds to the polo, tho perimeter to the equator, both in proper seale. This fact was inherent in .Jomard's conclusions, but got lost in the babble of cubils.

Each flat tace of the Pyramid was designed to represent one curved quarter of the northern hemisphere, or spherical quadrant of 90°

To project a spherical quadrant onto a flat triangle correctit. the arc, or base, of the quadrant must be the same length as the hase ot the triangle, and both must have the same height. This happens to bo the case only with a cross section or meridian bisection of the Great Pyramid, whose slope angle gives the π relation between height and base.

John Taylor inluitively suspected something of the sort, but was unable fully to formulate it.

The subtlety of the Pyramid's projection lies in the fact hat when viowed from the side, tho laws of porspectivo reduce the actual area of a face (mathematically oversized) to the correct size for the proiection, which is the Pyramid's cross section.

What the viewer saw. and sees. with the aid of perspective is the correct triangle.

The key to the geomotrical and mathomatical secret of the Pyramid, so long a puzzle to mankind, was actually handed to Herodotus by the temple priests when they handed to herodotus by the temple priests when they
informed him that the Pyramid was designed in such a way that the area of each of its laces was equal to the square of its height.

This intercsting observation reveals that the Pyramid was esigned to incorporate not only the π proportion but another and even more useful constant proponton, known in the Renaissance as the Golden Section, designated in modorn times by the Greek letter φ (pronouncod phi), or 1.618.*
φ, like π, cannot be worked out arlihmetically; but it can φ, like π, can , wo wh stralghtedge.
With the incorporation of the Golden Section, the Great Pyramid provides an eflective system for translating soherical areas into flat ones.
Anyone who is not anxious to follow the simplified mathe nalles in this chapter may more simply sklp to the following chapter-which contains the answer to the riddle. But he will miss some odd conceits about the relation of

It tho 356 cubits of tho Pyramid's apothom are divided by hall tho baso, or 220 cubits, tho result io $89 / 55$, or 1.618 .
mathematics to the cosmos and to the creative function of life as embodied in the sclence of the bullders of the Pyramid. The pharaonic Egyptians, says Schwaller de Lubic2, considered φ not as a number, but as a symbol of the creative function, or of reproduction in an endless series: to them it represented "the fire of ilfe, the male action of sperm, the logos of the gospel of St. John."

The Golden Section, or φ, is obtained oy dividing a line

at a point C
\qquad
In such a way that the whole line
A

A

in the same proportion as the first part
A \qquad 6
is longer than the remainder.
c

$$
\text { This will mean that } \frac{A B}{A E}=\frac{A C}{C B}=1.618 \text {. }
$$

This equation, which appears so simple, turns out to be loaded wilh meaning. Plato in his Timaeus went so far as to consider it. and the resulting Golden Section oroportion the consider it. and the resulting Golden Section proportion. It most binding of ail mathematical relations, and makes it the koy to the physics of the cosmos.

In the Great Pyramid the rectangular floor of the King's Chamber (which consisls of two equal squares, or a 1×2 rectangle) also serves to illustrate and to obtain the Golden Section.

If you split one of two squares in half and swing the diagonal down to the basc, the point where the diagonal touches the base will be φ_{1} or 1.618 in relation to the side of the square. which is 1 .
\square

- Pythagcras' theorem will glso show that the value of \& will be $1 / 2+\sqrt{5 / 2}$, or 1.618 , and that $p-1$ will be 618 .

Search inside

Tho odd, If not unique, mathematical fact that $\varphi+1=\varphi^{2}$ and that $1+1 / 0=\varphi$ leads to an additive series, known os a Fibonaccl series, in which each new number is the sum of the previous two: 1-2-3-5-8-13-21-34-55-89 . . etc., and their ratio comes closer and closer to $\varphi .^{\circ}$

In Egypt Fibonacci got wind of the additive sories and popularized its mystical quality by bringing to Europe the story of the "rabbll problem." or how to lind the number of rabblts born in one year, starting with an original pair. Assuming the rabbits to be enclosed by a wall and that every month they produce a pair of rabbits, and that eech new pair in turn produce another pair each month, the answer could be obtained by the additive series 1-2-3-5-8-13-21. ... in this case it is 377 pairs of rabbits.

This mathemallical grid, based on the Goldan Section, was the tecome ve backbone of the archilieclural system davciopod by tho grasir fronch his constuction of anyihing from the United Natione building in New York to the closels in a bathroom.

Le Corbusior's "modutor" based on the r relation in the numan body.

Funk + Holler's anatysis of Funk-Hollor's anarysis of
(32) Mainardi, (33) Michelan(32) Mainardi, (34) Golden Section com-
oel poes: note 55;89 relation, (35) Ceronese, (37). (42). (43) Raphael, (38). (39). (41) Leoardo da Vinci, (10) Fia Lippo Lippi.

In the Renaissance the φ proportion, or Golden Section, as it was called by Leonardo da Vinci, served as the hermetic structure on which some of the great masterpieces were siructure on which some of the great masierpieces were Soction for Luca Pacioli, known as "the monk diunk on beauly," which was publishod in Venice in 1509.

Search inside

Funk-Hellet has analyzed the φ proportion in a score of masterpieces, Including Titian's Presemtation of the Virgin, Lulnl's Sleep of the intent Jesus, and Veronese's the Wedding at Cana.

The conclusion that the Egyptians of the Old Kingdom were acquainted with both the fibonacel scries and the Goiden Secilon, says Stecchlni, is so starlling in relation to current assumptions about the level of Egyptian mathematics that it could handly have been accepted on the basis of Herodotus' statement alone or on the lact that the Herodotion satemen abe incorporeted in the Great Pyramid ,ut the many measurements made by Protessor Jean Phllippe ut the many measureinents made by Protessor Jean Phllippe Laur, says stecchin. deliniely prove le occurre of Goiden
\qquad Prolessor Lauer, for many years the architect for the Professor Lauer, for many years the architect for the
Egyptlan Department of Antlquities. has made thousands of measurements ol ancient Egyptian buildngs.

Schwaller de Lubicz also found graphic evidence that the pharaonic Egyptians had worked out a direct relation between π and ψ in that $\pi=\varphi^{2} \times 6 / 5$.
In the tomb of Rameses IX there is a stiange figure of a royal mummy with one arm raised and an erect phallus. The mummy is lying at the hypotenuse of a sacrod 3.4-5 right-angled triangle indicated by a snake.

The length of the body, says Schwaller, is claarly 5 cublls and that ol the upright arm is one more cubit, for a total of 6 . At the same time the body is divided by the phallus in the proportion of t and φ. for a total of φ^{2}.

This, says Schwaller, makes the outsiretched arm give a value for π of $6 / 5$ of the body, or φ°. which is 3.1416 .

On the east side of the temple of Luxor. Sctwaller atso

$$
2.158 \times 6 / 5=3.1+16 .
$$

Prisests exiling from inird pylon of the Greet Temple of Kamak beating the king's datque.

Schwaller de Lubicz shows how the value of π correct
to four docimale, or 3.1416 , to lour docimals, or 3.1416,
was incorporated into ite greal gaie whose basic moasuroment was 1×2

解 angle formed by a snako. Schwaller de Lubicr? shows the king as of split itito a phatus. The king's taised a gives a $8 / 5$, or 1.2×4 ? proporlion, which is oxsetly 3.1416, or

These proportions create a relation between the sides of the triangle such that if the hall base is 1 , the apothem is φ and the helght is $\sqrt{\varphi}$.

This relation shows Herodotus' report to be indeed correct. in that the square on the helght of the Pyramid is $\sqrt{\varphi} \times \sqrt{\varphi}=\varphi$, and the areas of the face $1 \times \varphi=\varphi$.

The simplicity of the system incorporatod in the Pyramid makes child's play of the complexities of mathematical map projection. All one need understand is that π Is the unchanging value which links a straight dlameter to a curved circumlerence.-

- if timas the diamoler of a circle will equal its ci:cumference. t fimes one-half the diametar squared wlli equal the area of the

Although the squaring of a circle is an insoluble problem if you use the irrational number of π. it is nevertheless pracif you use the irrational number of π. It is nevertheiess prac
tically resolvable as a function of the Golden Number φ. Because $\pi / 2=2 / \sqrt{\varphi}$ to within a thovsandth part, π can usefully be taken as $4 / \sqrt{\varphi}$.

The pyramid is so designed that for all practical purposes is accomplishes the squaring of the circlo. The Pyramid's base is a squaro whose perimeter is equal to the circumference of a circle whose radius is the Pyramid's height.t

Superimpose the square on the circle and you get nol only an interesting but an extremely useful diagram consisting of the perimeter of the Pyramid and the circumference of the circle it represents.

- The fothowing examples are included for the sake of those who might doubt the mathematles, they are not essential io the narrative. Becouse τ also cquals $\mathrm{r}^{2} \times 6 / 5$, it is possible to
use tha Fibonscal sorios to obtain an accursto retalion for tho diameter of a circle to its circumierence without recourso to τ. In ine Fibonacciserles ot 21 - $34-55$. it 21 is taken as the diameter of circte. It circumierence w*l be $55 \times 6 / 5$, or 65 , sccurate to ono-thousbendt pait, gwing the Great Pyramid value for π of $22 / 7$ or 3.14285 .

Highes numbors in the Fibonaeci satios provido inoreasingly finer alues in whole numbers accurate to one ten-thousandth part. Protonging the serles. which goes ... 89-144-233-377-610 siameter of 1144 gives a clrcumference of $377 \times 6 / 5$. with a vaive lor π of $3.1+15$; a diameler of 233 gives a clicumterance of $810 x$ G/5. with a valuo for π of 3.1116 ; and 30 on.
\dagger Four times the base of 440 cublts equats 1750 square cubits. The height of 280 cubits $\times 27$, or iwice 22/7, equals 1780 square cubits.

Three more lines will provide the mathematically correct cross section of the Pyramid of Cheops

By simply enclosing the diagram in another square, and inserting the φ relationship as it exists in the Pyramid, a key is obtained for readily translating sphorical surfacos into flat ones of equal area.

To obtain a rectangle equal in area to the besic circlo, iwo sides of the smaller square need merely be prolonged till they touch the sldes of the larger square.

The area of the rectangle is its length times its width. or $2 \sqrt{\varphi} \times 2$, which is $4 \sqrt{0}$.

The area of the circle is πr^{2}, or $\pi \varphi$ in this case, the radus being $\sqrt{\varphi}$. But since $\pi=4 / \sqrt{\varphi}$. the area is also $4 \sqrt{\varphi}$. the same as the rectangle.

Thanks to the Pyramid's structure it is thus possible, with virtually no mathematics, to draw a rectengle flrom the base of the Pyramid and twice its height) which will be equal in of the Pyramid and twice its height) which will be equal in
area to a circleon its height. This leads directy to being able to draw a rectangle or trlangle equal to a spherical quadrant. resolving the main problem of the map maker with the same simplicity.

As the whole circle equals the whole rectangle, half the circle is equal lo half the rectangle.

But halt a flat circle is also mathematicalily rigorously equal in area to the spherical surface of a quadrant of 90°.

Thus a rectangle of height $\sqrt{\varphi}$ and a base of 2 is equal to a quadrant of helght $\sqrt{\varphi}$ and an arc of 2 .

It is thus possibie to transfate a spherical quadrant of 90° of longitude onto a flat Mercator surface of equal area or onto an undistorted tilangle of exactly halt that area.

With the Pyiamid, the ancient Egyptlans had not only squared the clicle but effectively cubed the sphere.

XVI. SCIENTIFIC SURVIEY GIVES GEOGRAPHICAIL PROOF

That the Pyramid ol Cheops was Intended to represent a geographical rendition of the northern hemisphere was geographical renation of the northern hemisphere was
indicated repeatedly in the ancient texts, as Jomard had noted. From a careful analysis of classic Greek authors, Stecchini narrowed the souices of information on the Pyramid -other than Herodotus-down to a single Greek writer. Agatharchldes of Cnidus, a peripatetic philosopher who was guardian to the king of Egypt at the end of the second centuryig.C.

Agatharchides reported that the length of one side of the base of the Pyramid corresponded to $1 / 8$ minute of degree, and the apothem to $1 / 10$ of a minute.

Jomard had hit upon this information and used it to find an almost cxact solution: hls apothem of 184.722 meters multiplied by 10 gave a minute of 1847.22 meters, which is aimost precisely the length of a minute of latitude at the twenty-ninth parallel. This led Jomard to assume that the builders of the Pyramid had chosen to use the mean fatifude value for all Egypt, which he figured to be $27^{*} 40^{\prime}$.

What Jomard could not know was that the most anclent geodetic center of Egypt had been placed at $27^{\circ} 45^{\prime}$. precisely halfway between Syene on the Troplc, and Behdet on the coast of the Delta. He could not have known this because the site of the new capital of the young pharaoh Akhnaten called Akhtaten or "Resting point of Aten" had not yet been dlscovered neas the modern Tell el-Amarna, nor had the young Champollion yet declphered the hieroglyphs

A stone text found in the ruins of Tell el-Amama relates to the foundation of the capital. One of the surviving copies is about twenty-five feet high. It glves the length of the now capltal as being limited by two boundary stones meticulously set "For eternity" at the exiraordinary distance of 6 atur, $3 / 4$ of a stadium and tour geographic cubits. This Indicates an of a stadium and tour geographic cubits. This indicates intended accuracy of one in ten thousand. As Stecchinl interprets the text, it not only specifically indicates $27^{\circ} 45^{\prime}$ as the anclent geodetic center of Egyps, but gives the length of the average degree of latitude between the equator and the

Search inside
pole to be 240,715 cubits of $111,136.7$ meters. The modern estimate is $111,134,1$ meters.

As Stecchinl points oul, Akhnaten's geodetic retorm was a return to the predynastic system of computing the length of Egypt in geographic cublite rather than royal cubita

Had Jomard been able to measure all four sides of the base of the Pyramid with the precision of modern surveyors, he would have realized that the anclent Egyptlans intendedquite logically-for the base of the Pyramid to indicate the quine logically-for the base of the Pyramid to indicate in value of a degree at the cquator (where they apparenily considered ho ear ho be a true circle and a
Up unil
Up until the ime or Worid War I here still remained considerablo doubt as to tho actual longths of the four sides of the base of the Pyramid. Petrie had encountered great difficully In dellmiting the exact position of the corners. from which several blocks had been temoved. But in 1925. Ludwig Borchardt, then director of the German Institute of Archeology in Cairo, asked to borrow the instruments of the Govemment of Egypt in order to make a new survey of the Great Pyramid. Borchardt hoped that a realiy accurate set of measurements might at last separate the strands of lact from fiction in the mattor of the geometry of the Groat Pyramid.

The Egyptian government agreed to make the survey on condition that Borchard first clear all the remaining debris from around the base. When this was accompllished, an engineer named J. H. Cole was omployed to make a thoroughly scientific survey. Cole used an extensive sounding of the foundations. and vias finally able to ascertain to within millimeters the original position of each of the four corners,
Those wore publishod in Determination of the Exact Size and Orientation of the Great Pylamid of Giza (Survey ol Eoypl. paper 58) Cole gives 230.215 metars ($工 6$ millimetors) for the soulh side; 230.454 meters ($2: 10$ millimeters at lie west end and ± 30 millmeters at the east end) for the noth side: 230.391 for the oast side; and 330.253 for the west side.
Slocchlni surmisos that the apparent siscrepancies of a fow inches in the lengths of the four base lines might not rave been
errors on the p8it of oullders who coula set casing stones with errors on the patt of builders who coula set casing stones with of over 350 teal with a mere $1 / 4$ inch error in azimuth, bui intentional variants lor a delinito purposo.

Wore tho difforence in length of the sides to be explained not as the result of imprecision, but as Intended skill, it would be possibie to explatn the lack of squareness in Bie ancles of the base of the pyramid. in Stecchinl's opinlon, the Pyramld's sides may engle in multiples of 16^{n} in order to correspond to a socond time in the apparent moilon of the stars.

Ludwla Borchardt's measure sents of the angles of the base of the Great Pyramid

Pyremidion of capstone. from the pyramid of Amenemhel III (184Q-1801 B C.) at Dasher. It is of pollshed black grantie and cenved hieroglyphs.

If the base of the pesimeter is intended to be $1 / 8$ minute of degree, twice the perimeter will equal one minute, Cole's mean figure for twice the perimeter is $1,842.91$ meters. The modern ligute for a minute of latitude at the equator is $1,842.9$ meters.

From the figures it is evident that the anclent Egyplians know that a degreo of latitude is shortest at the equator and lengthens as it approaches the pole.

Schwaller de Lubicz artived at the same conclusion by noting that the Egyptians counted a minute of arc as being 1000 brasses, or 1000 fathoms of 6 feet According to Schwaller the bresse was a striclly geodetic measure that varied between 1.843 meters and 1.862 meters, depending upon the degree of latitude at which it was figured. The concordance is remarkable in that a minute of latitude is $1,842.9$ meters at the equator, and 1.861 .65 at the pole

Stecchinl's analysis of the ancient texis also helps resolve the problem of the apothem of the Pyramid which was said to be $1 / 10$ of a minute, or 600 foct

Agatharchides of Cnidus reported that the Pyramid of cheops was topped by a pyramidion, or capstone. of four Cheops was topped by a pyramidion, or capsione. of four
cubits which could be included in a calculation or excluded dopending on the problom to bo rosolved. Like tho obelisks most pyramids were capped by a pyramidion of precious melal that would sparkle in the first rays of sunlight.

Discounting 4 royal cubits for the pyramidion leaves an spothem of 352 cubits of .525 meter each, and solves the whole riddle of the cubits in the Pyramid.

It gives an apothem of 600 geographic feet of 308 meter or 400 cubits ot .462 meter. It also gives an apothem of 500 romon, 220 megalithic yarde, 320 pyk belady cubits, 100 brasses, 60 decapodes, 40 cannes, 10 shorl schoenia, 6 plethra, or istadlum. It is one lentis of a minute of latitude measured at the parallel ot the Great Pyramid.

Jomard had been lucky when he lound 600 feet to the apothem of the Pyramid. He had measured short, not knowing about the pyramidion, and come up with a very close 184.72 - which was detlded by his colleagues.

Six hundred feet of .308 meter is 184.8 meters. The modern estimate of $1 / 10$ minute of latitude at the parallel of the Great Pyramid is 184.75 .

But Jomard had been absolutely right when he said he found 500 old Egyptlan cublis of .4618 meter in the base of the Pyramid, and 400 larger pyk belady cubits of .5773 meter. Theoe cubits are based on what Stocchini found to be tho oldest foot in antiquity, the geographic foot which was still used in classical Greece and which survived in Europe down to our Middle Ages: in Egypt it was stilt common when Jomard arrived. Stecchini found evidence of this foot in temples in Mesopotamia in the preliterate cra as early as 3500 B.C. The same geographic foot forms the edge of a cube or artaba which was the standard unil of grain measure in the Near East down to the Persian Empire

It ls now clear that the minuto differences that appear in this foot in Persia, Greece, Mesopotamla and Egypt are due to the facl It was computed astronomically, varylng a mere fraction of a millimeter depending on the fattude at which It was measured,

The façade of the Parthenon is 100 geographic feet of - 3082765 meter, or 1 second of arc at the latitude of Athens, which is $37^{\circ} 58^{\circ}$. At the equator a foot is a millimeter less, or onty .30715 meter: at the mean tatitude of Egypt, at $27^{\circ} 45^{\circ}$. it is $\mathbf{3 0 7 7 9 5}$. At the latitude of the Great Pyramid it is what Jomerd found it to be: 3079. One and one-helf of these feet made a geographic cubit of 4618 , the same cubit Jomard found in current use when he arrlved in Egypt, and which had been current since the time of AI Mamun (by means of which the Arabs could have correctly computed the circumference of the carth).

If you divide the earth into 360 degrees, and again into 80 minutes of 60 seconds, the result is one second of arc. or 100 geographical feet. Translated into meters by multiplying by 308 the resuls is 38,916 .8 kilometers, which is
whthin one quarter of ono porcent of our modern earth clroumference of $40,000 \mathrm{~km}$. By Akhnaten's average degree it was an even closer $40,009,32$ kilometers.

Taylor had comewithin a halr of resolving the problem when he correctly postulated that the builders of the Pyramid had taken a great clrcle of 360 degrees and dlvided it first into 60 minutos and then into 60 seconds for a total of $1,296,000$ seconds of arc.

Searching for a unit among the anclent measures tha: would fit this total, Taylor came up with what he called the short Greek foot, or Ptolemaic loot, which was 1.0101 of an English foot. One hundred of the Ptolemaic feet to a second of arc gave an carth circumference of $129,600,000$ Ptolemaic feet, or $130,908,960$ English feet, which was a bare one thousandth short of the estimate of the earth's circumference in Taylor's day.

Taylor's Ptolemaic foot was, of courso, none other than Jomard's foot of .3079, from which was derived the cubit of Jomard's foot of .3079 , from which was derived the cubit

618 meter, 500 of which it the base of the Pyramid.
But Taylor couldn't make the sums come out because h was using the base computed by Le Pere and Coutelle, which was about six feet too long, and into which neithertho Ptolomaic foot nor the cubit would fit.

For lack of Cote's precise survey, poor Taylor, who was hol on the scent. was obliged to discard Jomard's thesls that 500 cubits of 4618 fit the base of the Pyramid along with the idea that it was intended to ropresont $1 / 8$ minute, or $1 / 480$ of a geographical degrec. That Tayior was loath 10 do 50 is clear from his comment that he was sure that "it is in this direction. If any. Ihat we may hope to Ind a satisfactory answer to the question: why was the Great Pyramid built?"

Instead, Taylor pursued the confusing idea that the Pyramid had been intended to indicate a polar axis for the earth of $500,000,000$ Pyramid Inches, and that the Egyptians had measured the base of the Pyramid in units to fit a solar year or 365.2322 days.

Piazzi Smyth, who also sensed thoro was truth in Taylor's Piazzi Smyth, who also sensed thoro was truth in
probings, followed him into this apparent cul-de-sac."

- Even so Taylor and Sinyth may liave been on the track of a solution. Taylor suggested thet the circumterence of the earth the polar axis had boen measured in inchos and sacrod cubita. In his recent Mistorical Metrology, Aigemon Berriman suppotis Taylor's hypolhesis by showing thal whereas a "sacred" cubit of 25.064 inches is the ten milionith part of the earti's polat isdus. a "royal" eubit of 206265 incrige is a traction of the circumlerence of the earth in that it is 206.265 soxigosimal seconds of arc: in other words the radius laid along a clrcumference of $1,296.000$ seconds becomes a a radian of 206.265 seconds.

Search inside

Why Tayior, Smyth, Petrie and Davidson could nol, or would not, avall themseives of Jomard's figures is a mystery. The iwenty-one volumes of the Description de l'Egypte are bulky, hatd to come by, and harder to handle (ihey are in leatherbound tolio and double [Allantic] folio, weighing as much as fifty pounds), and the information is scattered, without an index, through hundreds of pages of text, mixed wilh thousands of incongruous or irrelevant lacis and figures; but the hard facts and figures are there: and Jomard's handiling of them is lucid.

More surprising is the doggod determination of Egyptologists and writers on the Pyramid to continue to overlook or deny these lacts. Even so eminent an Egyptologist as Jean Philippe Lauer, architect for the Egyptian Department of Antiquitles. who certainly had ready access to Description do l'Egyplo (his fathor was a curator of the Blbliotcque Nationale) continued to dispute Jomard's conclusions even as tale as after World War il.

In his book Le Probleme des pyramides, Lauer withes: "We must recognize that all this prelly hypothesis rests on inexact data. The oubit of .462 moters derived by Jomard from the base and the apothem of the Pyramid appears to be as hypolhetical as that ol Piazzi Smyth."

Ironically, tne Director of the Department of Egyptian Antiquities, M. Etionno Drioton, who wrote the preface to Laver's book. comploined that it is because of their opposition to such theories as Jomard's that Egyptologists are being treated like "nall, blind, refractory dabbters in science whose quiel routines have been disturbed!"

That Jomard's cubit of . 4618 or . 462 meler ls incorporated 500 times in the base of the Great Pyramid and 400 times in the apothem is no longer a matter of debate. Thanks to Cole it is a simple matter of mutipipication. Even the confusing report of the Roman historian Pliny that the base of the Pyramid measured 833 1/3 feet and its apothem 666 2/3 feet becomes easily resolvable. The incongrulty is rallonal when It is realized that Pliny's foot was simply $9 / 10$ of a geograohlc foot. In other words, $8331 / 3$ of Pliny's feet turn out to be 750 geographic feot, or 500 geographic cubits.

The 500 cubits base is equal to 230.3625 meters falmost exacily Cole's figure) if measured by a geographic cubit computed at the equator, and 230.925 (aimost exactly Jomard's figure) if measured by a cubil computed at the Jomard's figure) it measured by a cubil computed at the parallel or the Great Pysamid. Tho difforonce in cubitswhich amounts to a fraction of a millimeter-makes no difference whatsoever to the relative values of the olther units. For the sake of clarlity the accompanying chart uses a cubit of . 462 and a foot of .308 .

Ancient Units of Measure Contained in the Great Pyramid in Round Numbers or Exact Fractions

The units of moasuro, from the short 1001 of 300 meter. through the various cubils, brassea mogalithic yorde, parasanos, and miles, all in perfectly in eilher lound
numbers or oxact fractionena into the base and apoithem of the Great Pyiemid because thay are all fractions of a correct geographical da
of latilude or icongitude at the oquator. Tho Grea Pyramid is thus a true standard of measure and a scale hemisphere.

616 Egyptian foot of 300 molor 600 Groek or geographle feet of 308 meter 500 remen of 3696 meter 400 geosraphic cubits ol 482 meler 352 royal cubits of .525 meter 320 pyk belady of 5775 mcter
275 mogalithic yards of .84 melor 100 brasses or fathoms of 1.848 meters Bo decapodes or rods of 10 feet 40 roas of 15 teet
θ piethra
1 sradium of 600 leet (.308)
1/10 of a milo, or angular minuto
1/600 ol a geographic degres

Baso
0 Egyplian foot

Agatharchides wae quite right when he quoted anciont Egyptian sources as saying that the base of the Pyramid was intended to be $\$ / 8$ minute of degree at the equatos. 500 of Jomard's cubiss mutriplied by 8 for a minute. by 60 for a degree and 360 for a circumference, equal $86,400,000$ cubils.

Relation of the Ancient Egyptian Foot (of 308 meter) and Multiplos Thoroof to the Circumference of the Earth
in the circumtarerca there are
In the circumarenca
There are 360 degies
are 360 degiess
3,600 great Egyptian schosno
21,600 miles
216,000 stadia
1,296,000 plethra
2.160.000 schoenla
6.640,000 cannes

12,960,000 decapodos
21,600,000 brasses or ogylo
$86,400,000$ cubir
29.600 .000 leet
575,400.000 palms
2.073,600,000 lingers
129.600.000 feel
129.600 .000 ft
ol
360.000 ft 300.000 i 35.000 ft
6000 ft .

600 IL
100 IL
60 IL ${ }^{60} 15$ 15 fi. (1) cubi
10 ft
6 h 6 ft
$1: 2 \mathrm{IL}$
$11 / 2 \mathrm{IL}$
$1 / 2$ 1/412 $1 / 16$ ft.

Search inside

Oberisks olitside the temple 1 Anson-Ra at Kamak which was orlontod to tho olistice. By measuting thei hadow al the solstice it was
possible to extrapolate the meridian circumlerence of the plonot.

This reveals the source of the Egyptian cubit and foot. There are 86.400 seconds in a day of lwenty-four hours. or the time if takes the earth to revolve on lis axis. So the distance traveled by the earth at the equator in one second is exacly 1000 of Jomard's cubits.

The builders of the Great Pyramid gave its base a length orresponding to the distance the earth rolates in $1 / 2$ a second. This makes the cubit and the fool doubly earth commensurate: the cubit was equal to $1 / 1000$ of a second of time, the foot to $1 / 100$ second of erc.

How could the ancient observers have established this act? To compute the poiar circumference of the earth the ancients used the sun and the shadows cast by obelisks To compute the equatorial circumference they observed the passage of slars across fixed points such as obalisks. For he polar circumference they needed merely to measure the distance between tivo obelisks a tew miles apart and the difference in the length of the shadows of the obelisks

There was no need to measure such a vast distance as. separatod Aloxandria from Syene. The difference in latitude and hence the fraction of arc separating any two meridian obellsks. can be obtained by the relation of the obelisk's shadow to tis height when measured ar the moment of the solstice or equinox

To oblain tho oquatorial circumferonce, an obsorver at the base of an obelisk at the thirtieth parallel could signal the appearance on the eastein horizon of a cenith star to an appearance on the eastein horizon of a cenith star to an where the tip of the obelisk would be on the horizon. Noting the interval of time between the signal from the first obsenver and the moment the star appeared on his horizon (and knowing the earth moves through $1,296,000$ seconds of ar in 86,400 seconds of time), the observer could nigure the equatoriat circumference of the earth. At the tiritieth parallel it would vary from the equator by the cosine value of 30° or $\sqrt{3 / 2}$

It was thus simply a matter of deciding what unit of measure to use in computing these lengths. An observer looking up at the Grand Gallery from a point far enough back to sublend an angle of 2° at the opening, could then note the time it took a star on the celestial equator to cross the opening. He would then possess the necessary data to telate the width of the Grand Gallery to the circumference of the earth.

From the figures it is evident that the ancient astronomers took the earth's daily rotation on Ils axls as a unlt of time and made 1000 cubits the distance traveled by the earth in a second of time.

With a series of obelisks they could physiceily measuro minutes and seconds of meridian arc, along a meridian and extrapolate the distorted distance to the pole.

From many scattered texis Stecchinl has deduced that the Egyptians had worked out a simplified method of computing the change in oach dogree from oquator to pole by means of an additive and subtractive series. The geographic cubit was aiso ideal in that it gave an admitable length for Egypt of 1800 C00 cubits. From Behdet to Syene length for Egypt of 1.800.000 cubits. From Behdet to Syene is $71 / 2$ degrees, or $1 / \Delta 8$ th of the earth's circumferenc
$86,400,000$ cubils.

These cold facts should settle one whole facet of the mystery of the Great Pyramid. Clearly the anclent Egyplians knew the shape of the earth to a degree nol contirmed tIII the eighteenth century when it was established that Newton was correct in his theory that the planet was somewhat flattened at the poles, and they knew the size of tho earth to a degree not matc hed till the middle of the nineteenth
contury whon it was first romeasurod with comparable accuracy by the German geodesist Friedrich Witheim Bessel. It is equally evident that they could divide a day into 24 hours of 60 minutes and 60 seconds, and produce a unit of measure that was earth commensurate-just as Tayior. Smyth and Jomard had surmised.

So now that Cinderella's foot has been found to fit her lost slipper withoul pinching or effort, to go on lengthening and shortening the carbuncled feet of her ligly sisters would indeed be like M. Orioton's nail. blind and refractory dabblers in scion 0 . experts on ancient Egypt and Sumeria might helo bring to exper!s on ancient Egypt and Sumeria might help bring to sclence.

Sexagesimat, Decimal and Quaternary Relations of Ancient Egyplian Units or Measure

60 palirs

60 teat
60 decapodes
60 short schoenia
60 plethra
60 stadia
60 Egyptlari miles
60 grenra schoenta
60 sexagesimes
10 Egyptian feet
10 Egyptlan cubito
10 orgyio or brassos
decapodes
10 cames
10 shorl schoenia
10 stadia
10 grand schoonia

41 ngers 4 palms
4 palms
4 cubits
4 sides of 100 cubits (aroura?)

$=1$ canne
$=1$ shor schoesion
$=1$ sladium
$=1$ Hebreic mile
$=1$ Egyptian milo or minuto or degree
1 grand schoenion
= grand schoenion
$=1$ degres or motra
$=1$ sexagesime
$=1$ circumference of the globe
$=1$ decapode
$=1$ canne or Egyptian pole
$=1$ shorl zchoenion
$=1$ plethion
$=1$ stae al land unis of 100 cubits (aroura?)
1 stadium
$=1$ Egyptian milo
$=1$ degree of longilude
$=1$ palm
$=1$ 100t
$=1$ orgyte or brasse $=1$ short sch
$=1$ stadium

```
In circumforonco of world
In a oeograpmical degree
In a geographical minute (or rrite)
in a sladium
in a brosees
\(360,000 \times 360\)
360.000
38.000
6.000
600
6
\(11 / 2\)
```

Geodetic Values incorporated in the Dimensions of the Great Pyramid

	Base	ain	Abothem
Egyptian loot of 300 meler	770	3080	616
Grook or geographic foot or 308 metor	750	3000	800
Greek or geographic cubit of 482 meter	500	2000	400
Royd Egyptian cubit ol .525 meter	440	1760	352
Pyk Defary cubit of .5775 metor	400	1500	320
Negalitic yards of 84 meter	275	1100	220
Erasse of 6 geographic faei (1.848 meters)	s) 125	500	100
Decapodes of 10 geographic loet	75	300	60
Plelita	7.5	30	6
Stadium of 600 goographic leol	$11 / 4$	5	
Milies er minuto of dogree	1/6	1/2	1/10
Parasanos	1/24	1/6	1/30
Long schoane	1/48	1/12	1/60
Geographical degree	1/180	1/120	1/800

Search inside

XVIII. DECLIINE OF ANCIENT KNOWILEDGE

What remains a mystery is how all the advanced science of the anclent Egyptians could have been lost for so many centuries

In his reconstruction of preclassic geographical data, Stecchinl has traced an advanced science of geography based on accurate astronomical tables which were kept up to date all the way down to the beginning of the lirst millennium B.C. He has established that the later Babytonians still had excellent maps for their area of the world between the thirtieth and thirty-sixth parallels, made in segments of 6° of latitude by $7^{\circ} 1 \mathfrak{Z}^{\prime}$ of longllude, which gave them perfect squares because of the diminished length of a degree of squares because of the diminished
longitude between those parallels.

This same systom, says Stecchinl, was in use as tate as the reign of Darius the Great of Persia, whose empire, centered on the arbitraty geodetic point of Persepolis, ran precisely 3 unlls of $7^{*} 12^{\prime}$ east of the Egypilan meridian and three units of $7^{\prime} 12^{\prime}$ west of the Indian border.

But ertors were already creeping into the geography because of a lack of direct observation of celestial phienomena and vecause of the reliance by geographers on ancient astronomical data that were no longer up to date.

As an explanation for this regression of geographic science, especially during the Hellenistic period, and thereafter almost to modern times, Stecchlni suggests that when Alexander the Great destroyes Persepolis in the fourth century B.C. he may have exterminated Ihe Egyptian goographors imported by the Persians to do their figuring, and that when ho dismantled the center of Egyptian science at Heliopolis In order to build his own capital at Alexandria, he may have compounded the damage. The destructions of he may have compounded the damage. The destructions

- Hellopolis. the On ol the Blble, was considered the greatest university in the world. It had existed since much earliar times under the dom nation of the priests. of whom there were sald to bo 13,000 in tho time of Ramposoe ill, 1225 B.C. Noro than 200 years earlier Mosos was instructed al Heliopolis "in all the wisdom of the Eoyptians" which included physics, sinthmetic, geometry. asifonomy. medicine, cliemistry, geology, meteorology and music.

Romantic nineteentr-century deplction of Moses being
lound in the builrushas.

Gnomon at Aloxandria at summer solstico.

essential in order to destroy the geographic, and theretore he potiticat, basis of the oider empires

Stecchini's evidence shows that far from being the great nnovators of geographical knowledge, tho Alexandrine geographers of the next half millennium, such as Etatosthenes. Hipparchus and Piolemy were mainly handling and mistiandiling traditional oata of an advanced science that preceded them, and which they only understood in part.

Current scholarshio keeps repeating that the circumerence of the earth was firsl measured by Eratosthenes, the Greek who was put in charge of the library of Alexandria but it is clear that Eratosthenes merely cited old Egyptian information about the circumference of the earth without eally understanding it.

Eratosthenes claimed to have found that a degree of attude was 700 stadia. This, says Stecchini. was nothing but the traditional Egyptian datum of 14 atur 1050 stadia.

Eratosthenes also claimed to have tound by observation that when the sun doss not casta shadow at the southem limit of Egypt, it casts a shadow of $7^{\circ} 12^{\prime}$ at Alexandria.

Etatostheres 15 said to have
measured tho ciroumioronco of the earth by noling the angle or the sun's lays at Alexandis of the summor sobatico. e day he knew the sun would be directily avertiea at Syene on the trople of Cancer.
Findirg a shadow angle of - 12 ' al Alexandria, ho
duced the disiance from Alexandila to Syene to 1. 12° ol the 360° circumference of the globe. As $350 / 7^{*} 12=$ 50 , Eratusthenes multipl
5000 ztadia he belleved o separare Alexandra Irom yyorre by 50 and gol a figur 250,000 sladia lor the ircumierence of the eauth. Bucause his various ertors
anceled out he was credited min a sclentilic answer.

In reality Eratosthenes had read the old Egyptian data then more than 2000 years old) to the elfect that the trople was at latitude $23^{\circ} 51^{\circ}$ and that the sun did nol cast any shadow at Elephantine. What he did not know, and could not measure, was that by his time the tropic had shifted to $23^{\circ} 45^{\circ}$. Nor did Eralosthenes understand the necessity of adjusting his figures according to the apparent semi diameter of the sun; he believed Alexandria to be $7^{\circ} 12$ north of $23^{\circ} 51^{\prime}$; he oven claimed thal Alexandria wes on the same meridian as Elephantine, wheteas they are apart by about 3°, or 200 miles of longitude.

Furthermore, Eraiosthenes used the "great cubit" ot Babylon (532.702 millimetors) to obtain his stadium, instead of the more ancient royal cubit of the Egyptians of 525 millimeters. unaware that the first step taken by the Assyrians when they conquered Egypt in the seventh century B.C. was to substilule their own Mesopotamian cubit for the Egyptian one in order to manifost their own dominion.

On the basis of his rescarch into ancient geography, Stecchinl is now convinced that there existed on this planet a people with an advanced mathematical and asironomical science several millennia before classic Gireece.

XVIII. WHO BUIILT THE PYRAMID? WHEN? ANDHOW?

It would bo salisfactory to be ablo to describe the method by which the Greal Pyramid was put logether, by whom, and when.

But me bunders, whoever they may have been, lefl no description of their method. No one has even found a later Egyptian roport of how tho first pyramids were built. 11 is only on the basis of shrewd guessing that Egyptologists estimate the stepped pyramid of Saqqara to be the oldest of the Egypllan pyramids and altilbute its construction to the legendary architect imhotep in the reign of King Zoser ot the Third Dynasty.

The stepped pyramid of Medum, which was the first stepped struclure to be converted to a true pyramid, is attributed to Cheops' father Sneteru on simflarly sketchy evidence, the same goes for the bent pyramid of Dashur.

Lacking solid history, the Arabs (and tho Jows) of tho Middle East proliferated legend. The most ancient tradition about the Great Pyramid is that It was erected to memorialize a tremendous cataclysm In the planetary system which affected the globe with fire and flooding.

Arab authors recount that the pyramids wore ouit botore the deluge by a king who had a vision that the world would be turned upside down, and that the slars would tall from the sky. According to these Arab sources, the king placed in the pyramids accounts of all he had learnt from the wisest men of the limos, including tho secrets of astronomy, complete with tables of the stars, geometry, and physics, treatises on precious stones, and certain machines, including cetestial spheres and terresirial globes. They also speak of celestal spheres and

Tho earliest Jowish reports-other than the vague reference in the 首ible to "pillars of stone".-is in Josephus, who says the Sethiles were inventors of a wisdom which deait with cetestial bodies and their order In the heavens, deait with celestial bodies and their order in the heavens,
and that to preserve their wisdom for all mankind they bultt iwo monuments-one brick, the other stone-Ihe stone one being still extent in Egypt in Josephus' time, duting the first cenlury after Christ.

The Arab legends maintain that the Great Pyramid not

Sir Georeo Comowall Lowis. Iis An Historical Suivey of the Astionomy of the Ancionts,
complained of the arbilrary complained of the arbirrary deling used by Egyplologisis
which he compared to "the manioulalion of tise balance shoot ol an insolvent company by a dexierous accountant
(whoo, by transfers of capilal to hcomo, by Eupprozsion or transposition of items. and by the atteration of bad inlo good
debts, can convert a dalliciocy Into a surplus)." Lewls polinted out that Boron Bunsen end Dr. Lepsius, bolh eminent Egypologlsts, separaled tre
dastos of tho figure Sesostris by no less than 3793 years and asked: "Whal would we think it a new school of writers on
the history of France, entitling the history of France, entiting
themselvee Francologists, wore to arise in which one of the exding critics were to den that Louis Xiv lived in the seventeenth century, and ware
o Identify him with Hercules b or Romulus
Tha one."
Tho only major historian of ancient Egypl was Manetho, a priest. who wote a history ol Egyp! for Plo!emy II, bul it
was lost. Only scraps of it was tost. Only scraps of it,
translated by autiors who lived translated by autiors who ilved
about six hundrod yours aftor his deatli, have survived His list of dynasties, checked and n which the hlstory of Egy n which the history of Egy
bise been reconstructed. But very littife detall is known concerning the potillical history of nan the nearny twenty nam of Pharaohs listed by Mane tho. Most Egyplologists conside the Firs! Dynasty to have 8.C. and the Fourth. Consisting of Sneleru, Cheops, Didoufri. Kephiron, and My. kerinos. 10 have lasted ad
120 ycors from 2680 to 1250 y.C as the Oid Kingdom There tollowed a list initermodiato poriod, a Middlo ingdom from 2052 to 1785
B.C., a second infarmediale eriod, and a Now Kingdom trom 1580 to 1085 B.C. Post Empiro Dynastios XXI to
lollow down to 525 B.C.

Aecording to Steward the colonists were probably a band of Asiatic or Euphrateon travelers with a very advanced scientific and mathematical knowledge, who entered Egypt and organized the erection of the Great Pyramid. on mperion of which they latt the country, taving their knowledge with them.

As Steward puts it, the plans for the Great Pyramid were in existence a long time before the aciual constiuction commenced. and were the design of a single individual "who belonged to the Adamic Whita civilization encowed with moral, scientific and cultural altainments far in advance of ather contemporary civilizations."

Peiric substantialcs this theory to the extent that he believes: "The exquisite workmanship often found in the early period (of Egyptian architeciure) oid not so much depend upon a large school of widespread ability, as on a few men or above their fellows. Reterring to the phenomenal accuracy of the work embodied in the Grest Pyramid, Petrie ays, "Il was limited to the skill of one man."
recent soyie! authors postulate that the Egyptians may ave come from indonesia when their civilization was devastated some ton to twelve thousand yoars ago as a result of some cosmic catasirophe such as the falling of an asterold.

According to Peter Kolosimo in Terra Senza Tempo ubilished in Milan in 1969, the Russians have recontly brought to light some fascinating secrets of Egyptian archeology

The Russians are said to have found astronomical maps of surprising correcthess, with tho position of the slars as hey were many thousands of years ago. The Russlans ate also reported to have dug up several objects, many not yet Identified, including crystal lenses, porfectly spherioal, of great precision, possibly used as telescopes. Kolosimo says Imilar lenses have been found in Iran and central Ausiralia, but that they can only be ground today with a special brasive mede of oxide of cerium which can only be produced elecirically.
As to the actual dates of construction of the Great yramid, opart from the statement that it was built 300 yoars before the Flood, the legends add Ilttle. Egyplotogisls who orked out that the Fourth Dynasly must have reigned between 2720 and 2560 B.C. bolieve tho Great Pyramid was commenced in 2644; others believe that its consinuction was begun in 2200 and that 30 to 56 years were required to

Several altempts to chack these dala with Soviet academicians nave so tar been withoul result

To Egyplologisis Imholep (above) Was a national hero in
the reign ol King Zosal (bollow). he reign oi King zoser (bellow)
Imhootop of dosigner of the steppeo pyyamio or Saquara Wes sonsilered not ony the
world's greatest orchlloct bul worra's greatest archlloct but
a sage. maclecan, iton putest. medifai doctor, dipicmet, economist, and poest
complote It. Still others place the building of the Pyramid a thousand years carlier

As for the method employed by the bullders, the record is equally bteak. I E S Edwards of the Egyptlan Depanment of the British Museum, who spent a litetime going over the available evidence, points out in his scholarify treatise on the pyramids written in the 1930 s that little or no light is thrown on the sublect by extant Egyplian records. either wiltien or pictorial.

Tho resull is a congerios of conflicting thoorles not only about when but about how the Great Pyramid was built.

Nevertheless Egyplologists are in general agreement that the first step required on the Giza plateau was to ctear the sand and gravel down to bedrock, then produce a leveled base by removing protuberances and filling in depressions.
R. L. Engelbach, a pupil of Pelrie, and for many years Keeper of the Cairo Museum, belleves that to obtain a true level the Egyptians surrounded the lour sides of the area with low banks of mud from the Nile which they filled with water and through which they cut a network of trenches. The degree of their success is attested by Cole's survey. which found the base rock of the thirteen acre perimeter to be tess than 1 inch out of level.

Into the base rock a row of fine rectangular, white Ilmestone slabs were carefully fitted as a pavement on which 10 lay the IIrst row of casing stones.

When it came to drawing the first straight side, Borchard and Lauer agree. the correcl orientation must have been obtained by means of repeated obscrvations of the rising and setting of circumpolar stars, of which the most likely was alpha Draconls.

The next stop would have been to fix the large limestone corner blocks into tho rock basc 30 as 10 form the square corners for the laying of the firsl rows of casing stones.

Archeologists have had iltte irouble establishing tha most of the limestone blocks for the construction of the Pyramid must have boon obtained from the deep Mokattam quarties a lew miles across the Nile on the Arabian side of the river. though many of the blocks may have been oblained direcily from the Giza hills.

On some of the blocks the names of the quarry gangs wero daubed In red ochro, such os "Boal Gang" or "Vigorous Gang.

The nearest source for the 70-ion granite monoliths used to protect the King's Chamber is the Aswan quarry, near Syene about 500 miles up the Nile; from there they were presumably lloated downstream on a series of ceed baiges,
W. Emery has shown that as early as the First Dynasty

The limestone blocks with which the Pyramid is bulls appoar to hevo been moslly quarried on the spot. or acro the Nite in the Mokattam fronithe Turah and Mavars quarries opposite Memohis. The 22 acres or casing stones are from the same quarries Tite granite blocks for the
pyremid aro believed to heve come from Aswan, near the first Cataract. where they wore quarried from the lace fom the ilght bank or the Nilo.

hillskles wero hollowed out provide unitorm limosiono o provide unitorm limaalono of the pyiamid.
quarried in ayort from tho top down.

Search inside

The Aswan oranite quarries were 500 miles south of tho Egrey Pyramid. in order to cut the stone blocko, the ancient Egyptians must have had some method in modern timos. To cul and finish hileroglyphs and other ornaments would require s tool with an extiomely hard- empered edge.
lound, probably becauso of the rapid oxidation of fron in Egypt, where the soll is especially nitrous.
the Egyptians possessed excellent copper tooks, including sews and chisels, with which to cut any kind ol limestone, and that their technique of working and polishing granite was developed to a lruly remarkable art. As an abrasive materia in their sawing operations they are belleved to have used molstened quartz sand.

To quarry the rock from tho hillsido, the Egyptians developed a variety of systems, traces of which can sill be found on the Mokallam range. Tunnels were dug several hundred feet into the rock, shelves were cut cut beiween the roof and the block to be derached then a line was the copped a chisel, which must have been highly tempered by some melled unk loday. Wedges were inserted which were moistened till they expanded to crack the rock. Sometimes fires were built along the grooved lines, and water poured on the heated stone to obtain a clear fracture.

The only historical description of the manner in which the IImestone blocks were taken to the Pyramid is by Herodotus. who claims that he was informed in Egypt that it took twenty years to build tho Pyramid and that levios numbering a hundred thousand men were employed for periods of three months to transport stone from the quarries. Herodotus says that to transport the rough blocks from the edge of the Nile up to the top of the Giza platozu, a great causeway was built up lo required ion yeers lo complete. The causow was buin which 1000 , 60 , and 60 feet wid. of polished stone, over which sleds could pull the heavy stones.

Soveral score Egyptians ransporting a colossal statue ank. Nole the timekeapcr tanding on the statua's knoe. d a man pouzing liquid runners to decrease |riction.

Commander F M, Barter, an American naval attaché who was stationed in Egypt at the end of the last century and wrote an Informed booklet entiled Mecnanical Triumphs of the Ancient Egyptians, figured that if the causeway had to rise to a height of 120 feet above the Nile, it would have had an incline of 1 foot in 25 , which he considered a very easy grade for a greased stoneway.

Barber estimated that it would take a force of 900 men harnessed in double rank on four draft ropes to drag a 60 -ton monolith up such an incline. On the causeway the men would cover a space 225 feet long by 16 teet wide, which Barber considered a sufficlently compact and manageable force.

Barber says that such a forco would havo no trouble dragging the stone, especially if they were diflied to pull logether, he concludes that for this reason men and not anlmals are pictured hauling wrought stones: men could be drilled to march in absolute cadence to a song or timo-keeping instrument. A "one-two-throe, surge," say Baroer, produces a momenlary force represented by nearly the weight of the whole mass of men, or several times their ordinary pulling force. Also, vacancies in the ranks caused by sickness could be fitted without materially aftecting the drill of the remainder. Cattio could never be so woll organized.

Pictures show Egyotlans hauling stone in the manner described by 8 arber and include a special antisan pouring some sort of grease on the sled runners to reduce friction.

Search inside

Other Egyptotogists have suggested that owing to the great quantily of supplies necessaty for building Cheops' pyramid, it was likely that several ramps led from the valley up to the Giza plateau, but very few remains of such possible causeviaye can now be observed because of modorn excavations and the widespread tourist layout.
According to the French scholar E. Amélineau, considerable remains of an Inclined plane leading to the pyramid of Kephren still existed at the end of the eighteenth century; and remains of a causevay leading to the pyramid ol Mykerinos are still visible today.

The Egyptian archeologis! Selim Hassan says thal at the edge of the Giza plateau there is a considerable surface composed of large limestone blocks which run in a northeasterly direction and descend to a little less than half the height of the plateau. He belleves they may have been part of a construction ramp which was demolished when the Great Pyramid was completed.

Ahmed Fakhry, another Egypllan archeologist, says that Ahmed Fakhry, another Eoyplian archeologist, says in
remains of a southern supply ramp composed of rubble remains of a southern supply ramp composed of rubble
mixed with mud still exists a short distance from the south side of the main causeway.

As to how the Great Pyramid was actually consiructed, there are dittering opinions among Egyplologists. Herodotus reported that the upper portion of the Pyramid was finished first, then the middie, and finally the part nearest the ground. This has been Interpreted as meaning that the finished outer casing stones were placed in position against the nucleus starting from the top, presumably by means ot a ramp that was removed as the bullders worked downward; this would was removed as ine builders vorked downward;

Herodotus maintains the casing blocks were lified from the ground. step by step, on pieces of wood, whth a machine

Search inside

Machino for raising easing stones, as described by Herodorus and reconstructed
by H. Stiaub.Roesslar. by H. Sliaub.Roesslar-
A ond B aro Louor's A and B aro Lounor's indies
thon ot how casind stones may have been fitted.
which he does not adequately describe. Cotsworth figures that if the stones had had to be rocked to the top as reported by Herodotus, it would have taken about a month to get each of the final ones up to the summit.

Barber maintains that sicel cranes or derieks would have been required to swing such greal stones as are found it, the Pyramid, and that for lack of such equipment the Egyptians would have had to construct a ramp in order to raise the heavy stones to the required lovol. Remains of such ramps have been found al the pyramid of Amenemhet at Lisht and also at Miedom. Aerial photographs Indicate substantial emalns of ramps under the sand at Dashur

Pelrie thinks the casing stones were placed in position at the same time as the core, starting from the bottom ond going up course by course. He estimates that about 500 blocks were brought over from the quarries each day and laid in place As the tover courses contain as many as 50.000 blocks, it vrould havo taken ovor throo months to lay each of these courscs.

Peirle says the transporlling was done during the three months of inundation, when a vast labor force was avatlable and withen advanlaga could be taken of the flood waters to float the blocks from the quarries downstream and across ive miles of swollen Niie. Petrie suggesis that even if no more than eight men could work together on an average block of 40 cubic feet weighing about $21 / 2$ tons, they could have transported ten such blocks to the Pyramid in three months, taking two weeks to bring the blocks down the causeway from the querry, a day or two with goud wind to lerry the blocks down the Nile, and six weeks to raise them

Aorial photograph showing 2mp under the sand leadin the pyramid of Dashur.
to the required position on the Pyramid. By November the men would be at llberly to return to thetr usual occupations when the land was again accessible

Petrie estimated the Great Pyramid to contain abou $2,300,000$ stones woighing $21 / 2$ tons aplece and averaging $50 \times 50 \times 28$ inches. If eight men could bring ten slones in three monihs, 100,000 men could bring 125.000 stones each season, or the required total in the iwenty years reportad by Herodotus

Edwards says there can be little doubt that in addition to the 100,000 men levied for the purpose of transporing the blocks to the Pyramid, many others were engaged In bultiling the Pyramid. These men, says Edwards, consisted of skilled masons and an attendant body of iaborers, centinually employed throughout the year preparing and laying the blocke ond erceting or dismantling the ramps. Presumably these workers could have been housed in the buildings tound

Romanticized modern diawing of oarges beling
rowed down the Nille loward the Guza pyramids.
by Petrie west of Kephren's pyramid, where about 4000 at a lime could heve lived in barracka.

Petrie figures that 40.000 skilled workers living permanently on the spot could easily cut and finlsh the 120.000 blocks needed each year: a party of lour men woutd have a whole month to handle each block.

Petrie believes the masons finished and laid the casing and some of the core masonry, course by course, on the ground, belore ralsing them. He found horizontal lines caived on the casing siones and on the core stones showing jus! how they wero to be fitted. He bolievos that skillod masons planned all the work throughout the year and that ot flood planned all the work ithroughour the year and inat of inskilled workmen raised the finlshed stones to their indicated positions.
Petrie says the casing stones were dressed by very tine picking or adzing and were moved into position from tho inside, whereas the core was filled in afterward.

Maragloglio and Rinaldi. Iwo ltailan scholars who recently made extensive measurements of the pyramios of Giza
which they incorporated into four carefully illustrated quarto volumes enthted L'Architetfura delle Piramial Menefite. agree that the casing and the nucleus were built up at the same time: they think the casing blocks were slid into place by means of a thin layer of very liquid mortar that served as a lubricant as well as a filler and binder: they also think the casing blocks were fevered into position from the back and sidos so as not to show marke or chips on tho front.

Ballard believes it would have been impossible to place he linished blocks without damaging their fine edges: he ininks the rougnly scabbed blocks were put in place and finished off wlith the aid of templates.

In support of Petric, 1, E. S. Edwards points out that because the lowest course of casing stones lies on the smooth pavement of Turah IImestone which projecis a couple of feet beyond the Pyramid base, it would have been impossible to lay the casing stones from the outer aide without damaging the fringe of the pavement which was to remain exposed: nor could they have been dressed atter being put in position wilhout damaging the pavement.

The fact that some of the limestone slabs of the foundation pavement are seen to be laid beneath the nucleus blocks atso inotcates the nucleus was filled in after the casing blocks had been placed in position.

Petrie believes the casing blocks were placed side by side on the ground and worked so that the back, sides and bottom would fit perfectly when put in place. The only thing left to do on the spot would have been the teveling of the uppar laces.

According to the architect Rex Engelbach and the engineer Somers Clarke, authors of Ancient Egyptian Masonry, in order to render the sides of line casing blocks perfectly equal they were placed side by side in the yard and a saw was passed between them. However, Maragioglio and Rinaldi could find no trace of saw marks on the vertical sides of any of the remaining blocks

Potrio claimed to have found traces of red ochre on some of the stone facos which had not been perfectly dressed. From this he deduced that the dressing was done by degrees -as a dentist shapes a toolh-the control being made with lacing plates covered with ochre.

In any case, the arrangemont of casirig biocks must have been worked out in detail well in advance of placement so as to assure a variance in the width and helght of the backing stones from level to level. so as to prevent the verilcal joints from coinciding.

All the stones presently visible in the Pyramid are backing stones speclally cut to dovetail and fit behind the outer

Search inside
casing. They are well dressed and squared, but made with rossilized limestone instead of the pure white.

Behind them the nucleus consists of less wcll-dressed and roughly faced blocks of greatly varying sizes, for easier construction, and to insure that breakjoints did not coincide in either sense. They are held together by a mortar composed of sand, lime and crushed rod pottery, which gives it a of sand, lime and crust
slightly pinkish color.

Maragioglio and Rinaldiattribute the concavity of the ides of the visible backing blocks to a means of preveniling tho facing courses from sliding, especially in the middle, by wedging the backing stones together at the conter. On the north side the concavity has been measured as .94 meter. Maraglogilo and Rinaldi belleve the casing faces may also have been slightly concave, It only for esthelic reasons, as the optic aberration would thus be corrected, the Pyramid edges would appear sharper, the faces Halter; also,

Laver's idea of how the ramp nould grow widor and narrowar.

any errors in dressing the faces could be more easily distingulshed.

Slight variatlons in the angle of the outer faces of casing fragments found in the rubble at the Pyramid's base may be explained by such a surface concavity.

To raise each course of casing stones and nucleus all the way up the Pyramid, Petrie belleves a ramp was constructed against one lace, and he estimates that its volume would have had to be at least equivalent to that of the Pyramid itself.

Batber points out that to carry an inclined plane to the top of the Pyramid at a grade of one in ten, it would have been necessary to start the ramp 6000 feot away in the Nile valley at a point over 1600 feel before the commencement of Herodotus' causeway. Furthermore, says Barber, there would always have been four times as much work to do on the inclined plane as on the Pyramid.

In order to carry the ramp to the top of the Pyramid, Barber estimates that some $75,000.000$ cubic feet of Nite bricks would have been necessary, of four times the number ol cubic feet of stone still requised to finish the Pyramid. With each additional course of masonry the ramp would grow higher and longer, but it would also grow narrower as the Pyramid narrowed at the top. According to Pliny such ramps wore composod of niter and salt which could late be dissolved with water, but the idea seems fanciful as it vould have required an ocean.
In Natural History of Novemoer, 1970, Olaf Tellefsen, an ongineer, suggests that the Great Pyramid could have been erected with only a few thousand men using a simple piece of machinery consisting of a slurdy wooden arm balanced with countervelights on a fulcrum fixed to wooden skidsmuch tike the machine drawn by the Gennan engineer L. Croon.

This, says Tellelson, would have donc away with the need
for huge ramps posiulated by Egyptolosisis on the basis of archaeological remains Accoroing to Tellefsen, there was not enough manpower in ancient Egypt to build such ramps boyond the halfway mark of the Pyramid. Egyptologists countered, a litte acidly, thot from thal point on the ramps narrowed rapidly, and that there appeared to be litle evidence for Tetlelsen's contention.

Cotsworth believes the Egyptians used a more irgenious system for raising the stones by laking advantage of the building itsell as a ramp, dragging the stoncs up the Pyramid's own spiraling outer wall. This would enable the builders to fill in the core as they went up and finish the casing as they came down. Cotsworth says he watched a modern Egyptian peasant build a pigeon houso by just this method.

The system has the added advantage that if the south wall of the Pyramid were completed first. the rest of the work could have been carried out in its shade rather than in the broiling sun.

But with or withoul the broiling sun, if one takes into account the problems of quariying, roughing oul, Iransporing over two million core stones, and finishing some 115,000 enormous casing atones to a precision of $1 / 100$ inch, thon raising, manipulating and mortaring them into their correct
place in a unifled polished structure. one must agree with Antoniadi that the mind boggles at the enormliy of the effor

According to Barber's well-trained naval mind, it must have required the organtzing capacity of a genius to plan all the work, to lay it out, to provide for emergencies and accidents, 10 seo that tho men in the quarries, on the boats and sleds, and in the masons' and smithies' shops were all continuously and usefulty employed, that the means of iransportation was ample, that the commissarial did not fall, that the water supply was ample and conveniently disposed, and that the sick reliets were on hand.

Barber points out that public works were essential to keep this population employed and ted duning the floods. August Mencken presumes that no tess than 150,000 women and children also had to be housed, fed, and policed in nearby settlements. Judging from the lexts and the paintings dealing with the subject of forced labor. Barber figures a large portion of the duty of the standing army of 400,000 men must have been that of guards.

Cotsworth says that in the rainless climate of Egypt no housing was needed for the natives who were accustomed to surviving on grain and water, and that the desert provides better sanitation than was available in Viclorian England.

The waste chips of the masons were thrown over the

In 1950 the Mussum of Science in Boston bullt a model to the scale of $1: 120$ showing how they believed the
pyramids of Giza to nava pyramids of Giza 10 hava
been consiructed with slanthg eide ramps, thito up and one down:
Dows Durham, curator of
 siole for the technicat details. disagreed with the theory of ong ramps bocause every lime the hullding rose a few feet the ramp would become usable Unil it
and extended.
Durham conceived the side amps as bolng about 1 leet wide, or sufficient to
hancte a sledge with a double row of men to dreg tha stone3 over wet timbers lor reduc. ing ritcion. However, lurning tho comers would not have been oasy.
cliffs of the Giza hill on both the north and the south sides, where they formed banks stretching out a hundred yards, occupying a space almos! half the bulk of the Pyramid. The slopes formed an angle of rest of about 40°. showing the different qualities ol refuse thrown away on different days, varying from largo chips to mere oweepinga.

In pits which had recently been made in part of the heap ciosa to the edge of the cilif, Petrie noted tayers of desert flint and sand showing when a plece of desert ground had boon cloared to got moro spaco for working. Among the rubbish he found pieces of workmen's viater jars and food vessels, chips of wood and charcoal, and even a piece of ancient string.

The only repon on the daily cost of building the Pyramid given by Herodotue, who says that an interpreter told him ts given by Herodotus, who says that an interpreter told him spent on radishes, onions and garlic for the workmen vas Inscribed in Egyptian characters on the base of the Pyramid. But the report sounds apocryphat, as does the one passed on by Herodotus to the eftect that Cheops became so broke during the operation that he prostituted his daughter by placing her in a chamber and charging each vistior the equivalent ol a finished llmestone block for her tavors.

Kingsland figured that to position an estimated $2,300,000$ blocks in a period of 20 years, or 7300 workdays, would have meant placing 315 stones each day, or 26 stones an hour working 12 hours a day.

Mencken, who has such disdain for the mathematicel and astronomical knowledge of the ancient Egyptians, considers it remarkable that they were able to solve some of heir problems of construction unless they had "more knowledge, better instruments, and far more ingenuity than generally believed."

Kingsland wonders whal means of lllumination the Egyplians used while digging down to the subterranean pit and what method they used for gotting air to the diggers. Ho finds it difficult to resist the conclusion that the Egyptians must have had tools and appliances of which we are totally gnorant, and must have employed methods which today woula be termed occult.

Some of their solutions may have been no more arcane than Lockyer's suggestion that with one movable mirtor and several ilxed ones. sunllight could have been reflected to any prt the interior of the pyramid

Though legend atributes to the priests of Heliopolis the
nack of being able to cause tempests and levitatc rocks hat a thousand men could not move. most Egyptologists argue sirenuously agalnst the possiblity of sophisticated instimments such as laser beams for cutting surlaces, or round-effect or antigravity machines tor raising weighte insisting that the job was accomplished with nothing but primillve apcliances and unllmited manpower. Nevertheless the consclenifously academic Edwards ludges the Issue by saying : "Cheops, who may have been a megalomaniac, could never, during a reign of ebout twenty-three years, have erected a building of the size and durabllity of the Great Pyramld if technical advances had not enabled his masons to handle stones of very considerable weight and dimensions."

Petrie is more specific and gives substance to the hypothesis of unknown methods, polnting out that in the pyramid of Kephren there is a granite portcullis weighing bout 2 tone which is in such a position in a narrow passage hat only 6 or 8 men could work on it at once. As it would ake a lorce of 40 to 60 men to manipulate such as a mass, Petrie concludes that the Egyptians must have had scme mains unknown to ua.
Although the Danish engineer Tons Brunés has demonstrated how a block as large as the beams of the King's Chamber could be comfortably raised by a single man with the doxterous use of balancing and wodges, Petrio is convinced that ancient builders possessed some more eflcient means of raising and setting stones than mere ollers, levers, ramps and manual hauling.

But perhaps the most puzzling riddle of the Pyramid requiring an intellectual game of detection, ls the one constituted by the three granite plugs wedged into the and of the Ascending Passage.

XIX. WHY WERE THE PYRAMIID PASSAGIES PLUGGED? WHEN? AND HOW?

Mosi Egyptologists conclude that the Pyramid was buitt as a tomb for some Pharaoh, presumably Cheops. Any mathematical, religious or prophelic theories about the structure thay consider to be lencilut, or, at best, coinstructure thoy consider to the lonciliul, or, at Gst, coin-
cidental. To Egyploogists the corridors of the Great Pyramid were designed solely as a means of transporting the coftin of the dead Pharaoh to his sarcophagus in the burial chember, as a means of exiting attor tho entombment, or as blinds to tead grave robbers away from a hidden chamber.

No other reason is offered for piling up so massive a mound of masonry than to protect the dead Pharaoh trom the attention of grave robbers. Oddly, this is the single function which neither the Great Pyramid, nor any of the others, managed to fulfill, there being no reliable report of any body having been found in any of the pyramids. only some tragments of oones whose dales are uncertain.

Even the "unplundored" tomb of Choops' mothor, Hetepheres, found in 1925 by the Harvard-Boston Expedition at the boitom of an $85-1001-$ deep shatl filled wilh rubble. appeared untouched in 5000 years: yet the sarcophagus was empty and is presumed to have been so placed within the "burial" chamber.

According to the Egyptologists, who inctude such eminent IIgures as Pelrie and Borchardt. once the body of a Pharaoh nad heen taid to rest in the Great Pyramid and the burial party had made ils exil, the three huge granite blocks. plus several limestone ones, were allowed to alide down the incline between the ramps of the Grand Gallery till they had completely plugged the Ascending Passage.

Whether the tripping mechanism could have been oporatod by romolo control from a safe distance below the plugged entranco, or whether the technicians responsible for the ulfoping device were immured for lite, or whether they managed to make their escape dovn what is known as the "well" are theories supporited in difterent degrees by difflerent Egyplologists.

Mathod af plugging the Ascending Passage as visualized by Coltrell from the ideas of Boichardt and nieeler.
Ideas of various Eoyptologist of the methods of pluggling passages, loworing por
cullises and sealing sarcophaol.

Search inside

Arrangerment of girdle stones to cubits epart, to tio the Ascending passege to body ol Pyramld, as diawn by Adam Rutherford, dircetor of tho Great Butain.
was decided to bury the king higher in the body of the Pyramid, which was already several courses high. The pit was therefore left unfinished. An Ascending Passago was carved up through the already lald courses of masonry, and continued as a new passage up to the level of the Oueen's Chamber.

White making a carolul study of tho walls of tho Ascending Passage, Borchardi observed that the stones at the lower end were faid approximately daraliel with the ground, whereas nearly atl those at the upper end were paraltel to the gradient of the corridor. From this he deduced that the Pyramid must have elready reached a level corresponding to hallway up the as yet nonexistent Ascending Passage before it was decided to use anl upper chamber: a that point the Ascending Passage was dug up throuch the existing level courses thereafter It was built with blocks parallel to its slope.

Borchardt's theory is supported by Leonard Cottrell author of a popular book on the pyramids, Nountains of Pharaoh, who suggests that whon tho builders switched plan they got as far as the Queen's Chamber complete with its air channels before they again changed their minds.

Cottrell says a third scheme brought with it the decision to heighten the Ascending Passage into "the magnificently corbeled Grend Gallery," extending it another 160 feet so as o build yel a thitd chamber, the King's, as the final resting place for the Pharaor's body.

According to Cottrell, tho change came about as a sort of Afterthought, while the great mass of builders was already in the midst of constructing a buliding whose base and slopes appeared to have been worked out with such exiraordinary precision.

Why the Grand Gallery should have been raised to 28 feet. when less than half that height would have been ample for the bearers and for the storage of the plugs, was not explained by Cottrell.

Search inside

Borchardt and Cotrell's theory was dispuled by Maragioglio and Rinaldi, who point out that the bottom of the Ascending Paseage was intentionally cut through the tower courses simply as a means of anchoring it to the body of the Pyramid. The thallans say the lower part of the Passage was not dug out of normal masonry or with normal methods, but not dug out of normal masonry or with normai metnods, but in masoniy especially erected to anchor the end of the Passege, many of the blocks being excoptionally largo, laid flat, vertical and edgewise, and of a difterent quality from the rest of the nucleus, with loints very thin and finely finished; whereas in other areas where the regular nucleus masonry is visible, the joints are wide and coarse.

The object, say Maragioglio and Rinaldi, was to create a bulwark at the juncture of the Ascending and Descending Passages so that the ceiling and floor of the Ascending Passage would not thrust down on the empry space of the Descending Passage. The Italians point out that several monolithic girdte stones are employed at 10 -cubit intervals all the way up the Ascending Passage to reinforce its bond with the nucleus ot the Pyramid, and prevent its slipping. but that no such girdie stones appear in the Descending Passage, where they are not nccded because the whole Passage, whore they aro nol
sage rests against the solid rock of the Biza hill.
Borchardt produced a furher refinement to his theory. which not only found few supporters, even among his fellow Egyptologists, but tended to discredit his wholo approach to the problem: namely, that the granite and limostone plugs which filled the Ascending Passage coutd not have been stored on the Grand Galiery floot between the ramps. because they would have provided an "undignified obstacle" for the funcral trein to clamber over. As the plugs wore 100 large to be brought in or out of either the Queen's Chamber or the King's. Borchardt theorized that the blocks were raised onto a wooden plattorm whitch was fitted into the grooves which appear halfway up the valls of the Gallery.

This would have allowed the funeral cortege to move beneath them: though how thls would have been any less undignitied than having to crawl up the low and narrow Asconding Passage is not explained, nor is it explained how Asconding Passage is not explained, nor is it explained how wooden planking to the level of the pavement on which they were to stide.

That Borchardt's hypothesis is unreasonable, say Maragioglio and Rinaldi, is ovidont from the fact that few archeologists have paid much attention to it.
As for the method of triggering the plugs down the Ascending Passage, Cottrell belleves the notches in the

Tieslie believed by Borchardt to have raised plug etonos the Grand Gallery,

ramp of the Grand Gallery were cut to hold cross beams of wood or limestone to keep each of tho massive piugs from prematurely sliding. According to Cottrell, once the funera cortege had passed, operators standing on the ramps could have released each plug, starting with the bottom one, and allowed them to stide into the Ascending Passago, on tho heory that had they all been released simultaneously the momentum and the total welght might have caused damage the lower end
The theory raiscs the quastion es to what bocame of the wooden or limestone crosspieces. Had they been made of wood they might conceivably have pulverized and completely disintegrated in the thousands of intervening years. They might also have boon carriod down the well by the escaping operators, though this would have been somehing of an ordeal, If indeed possible. The material might also have long since been disposed of by grave robbers. Still, tho question is puzzlling. Also, why go to all the trouble of plugging the Asconding Passage, only to leave the well halt as a perfectly simple way for thieves to climb back up to the Grand Gallery? The lower end of the well shaft could have been cleverly concealed; but its whole length could hardiy have been plugged or made impassable with fill Iler it had been used as a means of escape.

Part or all of the Descending Passage could have been
plugged and the Pyramid sealed. This would have been the simplest way conclusively to close up all the chambers in the Pyramid, making it an almost superhuman job to chisel out 350 feet of solid limestone.

Perrle cisputes the notion thas the long Descending Passage could have been tilled with blocks; and Maragioglio and Rinatdi suggest that traces of the dismantting of such plugs would have been left on the walls of the Doscending Passage, which is not the case, with the exception of a low feet beyond the entrance.

The mosi sophisticated refutation of the theory holds hat the Descending Passage may have been purposely loft emply and the pit unfinished as a blind to lead any robber who entered by the trap door to believe that no king had been burled In the Pyramid!

As for the well shatt, Maragioglio and Rinaldi have a completaly different theory about its function. They do not hink it was ever designed as an escape route; they think it was built in from the early stages as a service shaft and 10 bring air to the lower end of the Descending Passage.

The Italians say tho nood which lod to tho building of such a shalt may have arisen shortly after the beginning of the Ascending Passage, most llkely as a means of ventitating the lower shatt They believe the diggers at the botiom of the Descending Passage had difficulty breathing Plausible at first sight, the theory is open to ivoo objections: as the building went up course by course, above the level of the rock base. there would have been all the ait in the world. whereas digging the well shatt below rock level, the diggers vould have been as cramped and airless digging the well shaft as digging the Descending Passage, at loast until tho two met at the bottom-by which time the well woutd no longer have servedits venillating purpose, the digging having been completed.

Such an air vent might conceivably have been usetul o bring air to the pit, had the pit been used tor any continuing purpose, such as observing the stars.

The ttallans also believe that long before any funeral party entered the Grand Gatlery, the entire well shalt was fillod from tho top with debris and loose material. The bottom entrance was then earcfully camouflaged, and a stone was mortared into the upper end in the west ramp of the Grand Gallery to seal and hide the shaft from the top. They clte the fact that from classic times till the nineteenth century no one appears to have spotted the bottom entrance to the well shall.

Maraglogllo and Rinaldl agree with Petrie that the Pyramid vas violated by thieves or grave robbers soon after

Il was flolshed, ouring the clvil wars, which they date beiween 2270 and 2100 B.C. At this point the theory of the Italians becomes radical Thoy maintain it was those early despoilers of the Pyramid and not Al Mamun who cut a hole around the granite plugs at the end of the Ascending Passage. These thleves then worked their way up the Ascending Passage, broke through the lowered portcullis, and ontored the "crypt." According to the Italians It was these or successive thieves who lound the well shatl by noting a difference in the stones at the boltom of the ramp In the Grand Gallety, which they forced in order to clear oul the well shaft in search of treasuro. The Itaitans maintain that the marks in the west ramperound the missing stone appear to have been made with a chisel struck from above. They say it would also have been extremely difficult to remove the stone from below in the very rostricted passage which leads to the head of the vell shatk.
ro explain the way the Ascending Passage was plugged. the llalians maintain the inpplng mechanism could have been operated by remote control. They point out that it has recently been discovered that In the bent pyramid of Sneferu the blocks of grantte which plug the Descending Passage could only have been moved by gravity and not directly levered by workmen, becauso thero is no oscape route.

The Italians believe the plugs in the Great Pyramid were sidd on Ilquid mortar and thal lis forced accumulation accounts for the 10 centimeters of emply space between the first and the second granite plug; though thoy offer no explanation as to what may have become of the mortar, which could hardly have volatilized in the meanilme, unless It was some sort of oil and net mottar.

It is also hard to imagine how the antique grave robbers could have immediately found the exac! spot halifay down the Descending Passage from which to dig up past the granite plugs if there is any Iruth in the story of the plug being covered by a prismatic block

Maragioglio and Rinaldi suggest there was no such block; paradoxically they give credence to the story that Al Mamun's workers heard a heavy block fall-simply because At Mamun's passage takes a sudden turn to the oast in order to break into the Descending Passage.

Another theory which attempls to account for what could have taken place in the plugging of the Pyramid was produced in 1963 by August Mencken, the engineer trom Baltimore who has so little regard tor the scientific knowledge of tho ancient Egyplians. According to Mencken's somewhat lartetched reconstruction of events. when the Great Pyramid had been ouilt up above the ridge of the roos
of the King's Clramber, and work was still going on in the Grand Gallery and in the Antectiamber. the structure was suddenly shaken by a severe earlhquake. II was then, says Mencken, that the celling beams of the King's Chamber were cracked, the fissures opened, and, "to the terror of the builders, the triggering device which held the plugs on the builders, the triggering device which heid the plugs on the
floor of the Grand Gallety was sprung and the blocks slid down the Ascending Passage, blocking all extt trom the Pyramid."

According to Moncken, the men insido were trapped, but their plight was not desperate. "As soon as the fright and confuslon caused by the earthquake had subsided. the men on the outside discovered what had happened to the men on the inside and opened communication with them through the air ducts leading out from the King's Chamber. By the same ducts the trapped men were supplied with lood and water.'
Mencken figures thal to have chipped out the three granite plugs in the restricted space of the Ascending Passage was out of the question, and that to have funneled around them would have caused irreparable damage to the passageways. Rather than chip out the granite blocks, Ihe passageways. Kather than chip out the granite blocks, Ihe
Egyptians, says Mencken, decided to dig the well up from Egyptians, says Mencien, decided to dig the well up tho
the bottom of the Descending Paseage all the way to the end of the Grand Gallery.

The trapped men, says Mencken, were informed of wha was being done, "and by the lime the tunnel reached the opening in the Gallery they had removed the ramp stone." According to this theory an Inspectlon crew was sent to ascertain the damage and examine the King's Chamber ceiling: for thls purpose the small funnel, tater known Davison's, v/as dug straight through the lowest of the cush ioning chambors.

The plugging of the Ascending Passage, says Mencken put an abrupt stop to all other Interior work and made it impossible for the King's Chamber to be used for a burlat either reel or token. "So everyihing above the plug blocks was abandoned and thus ended the lirst and only eltempl of the ancient Egyplians to build elevated chambers."

In criticism ol Mencken's theory it may be asked why. if the building had been constructed to Just beyond the peak of the King's Chamber, would it not have been easier to emove several blocks trom the upper tiers in order to seach the trapped men rather than go through the trouble ol boring hundreds of leel up the whole length of the well? Also, if the builders had no further use tor the interior of the building, why go to the effort of finishing off the Pyramid and casing It with 22 acres of finely polishod limestone?

An entiraly different solution to the problem is provided by David Davidson, the structural engineer fiom Leeds. According to Devidson, the depth and width of the granite plugs which seal the lower end of the Ascending Passage clearly indicate that the plugs must have been buill into the passage at the time the Pyramid masonty had roachod the height of the plugs, of 17 courses.

Davidson, who spent several months in Egypt studying the Pyramid closely, says the haif-inch clearance at the sides of the top of the Ascending Passage would not be sufficient to insure the granito plugs being slid from the Grand Gallery without jamming.

This raises the question as to why the builders would have bothered to even build the Ascending Passage it they intended to plug it up immediately with three large granite plugs.

Davidson answers that the inside of the Pyramid was not desloned for contemporary use, but was intended to be discovered by people of a much later civilization, rather like our modern time capsulea, end thet the discoverers would have to break their way in through the serles of limestione plugs, much as Al Mamun is repuled to have done

This raises the question of the presence of the well shaft, which could have led any intrepid explorer straight to the Grand Gallery, bypassing the Ascending Passage. Davidson answers that the well was an afterthought, not planned in the beginning as an escape soute after a burial, if for no other reason than becsuse the Pyramid was never intended as a tomb.

Davidson has an ingenfous reconstruction of what may have occurred He maintains that some time not long after the completion of the Pyramid, an earihquake or several disasters severely shook the building. After the disaster the priests or guardians of the Pyramid noted certain suosidence effects on the externat surface of the structure, and they decided they must investigate the interior to see if the King's Chamber had collapsed or been badly damaged.

Davidson says this must have happened within a fex: oenerations of the comoletion ot the construction, and betore precise details and measurements of the internal construction had been lost.

The keepers, says Davidson, entered the Descending Passage and instead of trying to carve their way up through a score or more of limestone plugs in the Ascending Passage, as wes later to be done by Al Mamun, they went nearly to the boltom ol the Descending Passage and then began to bore a hole upward toward the beginning of the Grand Gallery.

Davidson's rendilion of the Groat Pyramid passages. nowling tinee large fissures in tho notural reck.

Their reeson for starting so far down, says Davidson, instead of taking a shorter roule past the plugged Ascending Passage, was to cut their way through, and carefully observe. fwo large fissures that had appeated in the bedrock. A third fissure, present a! the time of construction, had already been shored up by the builders.

The problem of the prlests. says Davidson. was to determine it the ilssuring was severe enough to cause further subsidence.

Digging in a gradual upward slope, says Davidson, the keepers worked thelt way through both fissures, finding them in not as bad condition as they had expected. At the levet of the Grotto the keepers made a staging area for loois, for rest, and for tho bypassing of workors and material.

From the Grotto they continued their shaft up loward the commencement of the Grand Gallery. Having somehow made an accurate survey of exactly where they were, they

Davidson's rendoring of the way the chambers in the Py,amld are alloned lust east of the main cast-west axis.
then bored straight uo and came out beneath the lowest ramp stone on the west side of the Gallery. To Davidson it is clear from tho fractured appearance of the ramp around the well entrance that the stone was forced upward and outward.

To accomplish such a feat of accurate digging would have meant knowing the precise internal arrangement and measurements of the Pyramid. Anyone boring blindly could have missed the few feet of Grand Gallery and been obliged to bore several hundred more teet through the limestone courses before coming out into daylight. This goes a tong way toward discounting the possibility of the well shaft having been dug by either thieves or explorers.

Once they had reached the Grand Gallery, says Davidson the keepers dismantled the lower section of the Gallery floor for a dozon or so feet and uncovered the passage to the Queen's Chamber. This they inspected carelully, but found titte or no sign of tallure.

Proceeding to the King's Chamber, the keepers lound indications of possible instability due to the movement. Inside the chamber they found the ceiling beams uniformly cracked along the south ends.

According to Davidson, it was then that the keepers smeared the fractures and open joints with cament and plaster. Petsie was later to report that he had found cement daubed on with fingers for about 5 feet on each side of the joints.

Whon Potrie carefully examined the King's Chamber he discovered that it had been badly shaken, probably by an earthquake. which caused the whole room to expand

Search inside

an inch or so. Every single beam had been wrenched more or less loose from the south end. and cracked through: the whole celling, weighing some 4000 tons, was held up solely by "sticking and thrusting." As Petrie summed up the situation, the downiall of the King's Chamber "is a mere the situation, the downial of the King's Chamber "is a mere question of time and earthquakes. What has

Davidson says the five construction chambers were
especially designed to take a considerable impact. Instead of especially designed to take a considerable impact. Instead
resting the uppermost beams on a hard granite wall, the resting the uppermost beams on a hard granite wall, the builders rested them on limestone, which could more easily crush and llow in case of subsidence. laking the straln oft the lower rows of ratters and keeping the walis of the King's Chamber Intact. Davidson says that a more rigid design, uniform from the lowest to the highest chamber, would have been disastrous.

To permit this buffer ellect being fully developed, the rafters of the chambers were not tied into the east and west walls. Instead, two immense limestono walls, wholly outside of, and Independent of oll the granite floors and supporting blocks, were built on the east and west sides. As Petrie put it: "Between these great walls all the chambers stand unbonded and capable of yletding freely to settlement."

To gain access to thase important construction chambers above the King's Chamber, the keepers, says Davidson. next drove an opering Into the east wall of the Gallery. staning at lis upper, or south, end.
in support of the theory that this hole was bored by koepers who were precisoly acquainted with the layout of the Pyramid (rather than by later explorers or thieves). Davidson points out that the hole is bored in exactiy the right place, and lakes off at the precise angle and direction to reach the lowest of the upper chambers.

Once Inside the lirst chambe, flater lo become known as Davidson's), the Pyramid keepers, says Davidson, found that the indications of instability were not so serious as they had feared. The great granite beams were indeed cracked, but the damage did not seem to be enough to cause any further crumbling or subsidence, nor warrant their boring any higher into the overlaying chambers. Inctead, the keepers again dauoed the cracks with plaster so as to be able to return at a later date and observe if any lurther movement had taken place.

According to Davidson, the keepers then climbed back down the woll, the bottom end of which they camouflaged, and left by the swivel-stone entrance on the north face.

There is nothing Inherently illogical about this version of evenis, It would have been no easy job to tunnel upward through the solid rock and the varlous courses of mesonryaltogolher hundreds of tons of material would have had to be chipped away and taken out of the Pyramid up the Descending Passage--but It would not have been impossible.
it would also have been a problem to got light and air to the men doing the chiseling, and it would have been tricky to raise a platform or system of suspension while chiseling upward: also it would have been a nuisance to have the fragments fall constantly in the face of the chiselers and those bolow them; but all of this would not have been impossible.

What militates against Ihls theory is the observation of Maragiogtio and Rinaldi that the walts of the well shaft upward from the Grotto aro built end lined with regular blocks of limestone, apparently as a leature of the original struclure.

Search inside

Conceivably these walls could have been lined by the kecpers, operating from the Grotto, perhaps to insure o slable surface in this final section of the shaft.

Ciear indications that it was not designed from the beginning were found by Petrie in the fact that the shalt is irregular and tortuous through the rest of the masonry. and that blocks with sharp corners were lelt in an irregularly curved shaft.

A French protessor of architecture, J. Bruchet, who went to the spot to verily and measure, and who published an illustrated book on the subject in Aix-en-Provence in 1966, agrees with Davidson that the granite plugs could not have been slid down the Ascending Passage; he velieves they were put in place at the moment of construction, when the Pyramid was still a truncated body. To have slid them down, with so little clearance. says Bruchel, would have required walis as smooth as glass, whereas he tound the wails of the corridor roughly finished

But Bruchet disagrees with Davidson that the well shaft could have been dug from the bottom up, giving as his reason the fact that the tottom of the well shaft goes slightly below the level of the Descending Passage. Bruchet believes that this would not be so if the shaft had been staried from bolow.

For the well shaft to have been dug from above. the operation could only have been completed betore the Ascending Passage was plugged, or after the opening of "Al

Mamun's holo." In a closed uppor Pyiamid there would have been no place to slote the carloads of rubble from the digging of the well shaft: the King's and Queen's chambers would not have been sutlicient, and storage in the sloping Grand Gallery would have roquired crosspiecos and sacks.

Bruchet points out that the well shaft could not have een dug after Al Mamun, because the lower end of the Descending passage was filled by itm with the reluse of Descending Passage was tilled by nim with the retuse of
broken limestone plugs, which were not cleared out till 1812 broken limesione plugs, which were not cleared out till
by Caviglia. Also, says Bruchot, there are no graffiti to indicate the presence of visitors in the lower passage after the date of the Hegira.

Another Frenchman, Georges Goyon. who coltected reproductions of all the graffition the Pyramid, which he put into a book dedicated to King Farouk, also does not accept the idea that the service shaft was used as an escape way. He too believes the Pyramid was violated a short time after it was bulit, and that "AI Mamun's hote" was made at this early period. He even goes so tar as to suggest that the early period. he even goes so lar as to suggest that ine
lirst violators entered by the lunnel now attributed to Al lirst violators entered by the lunnel now attributed to Al Mamun, and that Al Mamun's violatlon was made affer the
abiation of the Pyramid casing, wntch is In striti coniradicablation of the Pyramid casing,

Maragioglio and Rinaldi find some of Goyon's theories tenable, but are awaiting the publication of a booklet by Goyon In which he promises to add further materiat on the subject.

In a recent article in Revue Archeologique, entively devotod to the mechanism of the olosing of the Great Pyramid, Goyon suggesis that one or two men alone could have manipulated the whole traln of blocks down the Ascending

Goyon's view of how a single man could have eased a train of granito pluge down tho Ascending Passage with the woodan wedgos.

Passage by simply sliding them on clay mixed with cows' milk for greater viscosity, controlling the downward motion by means of wooden wedges on cither sido of the first block

Goyon says there are indications on the lowest granite lock of two slots 7 centimeters wide intended for wedges.

Goyon's arrows indicate slots In the granite plug for the insertion of wedges to contic

Goyon disputes the point made much of by Davidson hat the purely stylized portcullis outside the King's Chamber that the purely stylized portcullis outside the King's
indicates it was never used to seal an actual tomb.

Goyon belleves that the granite slabs-long since removed by grave robbers-could havo beon lowored in the eppropriato side slots by ropes run on wooden rollers, and that the four vertical slols carved in the face of the portcultls were intended to allow free play for the ropes.

In the final analysis, the theory which stands up best and is not in conflict with Davidson's findings, is that of the astionomers Proctor and Antonladl. which is supported by Kingsland and John and Morton Edgar, that the truncated Pyramid served as a stellar observatory by moans of which the oncient Egyptian priests were able to make accurate maps and tables of the visible stars from which to create their entire sclence ot asironomy, geography and geodesy Once they had obtained what they needed for their astronomical and astrological predictions (and for the secrets of surveying and map making), they may have decided to wall up their instrument so that no one else could know how their lore was obtained.

It would then have made sense to place the granile and Ilmestone plugs in the Ascending Passage while the top of the Grand Gallery was still open to the level of tho King's Chamber. To satisly this theory, the well shalt could have been carvedupward, as suggested by Davidson. or It could have been built in earller to serve the builders tor a varlety of reasons, including to serve as a means of coming and going to the pit whilo the Descending Passage was blocked by a reflecting pool. In any case, the shaft could have been comfortably filled from the top before the builders finislied off the bullding to tis apex to serve as a sundial and almanac

Donald Kingsbury, a protessor of mathematics at MCGlii University, suggesls that the well could have been used for observing the passage of stars at the zenith above the Pyramid. There are two vertical seclions of the well which could have served this purposo admirably and at different moments in the construction. There is a short vertical passage dug into the plateau which is served by the Grotto and linked to the Descending Passage so that signals could nave been freely passed betwoon polar and zenith observors. Another vertical section leads from the bottom of the Grand Gallery and could have been used for zenith observatton in conjunction with the Ascending Passage looking south and reflecting north. Kingsbury points out that with two such wells a short distance apart the circumference of the earth could have been computed by observing the passage of a zenith star.

Duncan Maenaughton In A Scheme of Egyptian Chronol ogy subscribes to the slightly different thoory that ancient scientists used the truncated Pyramid as an observatory. but that a later generallon finlshed it off as a tomb for some Pharaoh.

The custom of burying distinguished citizens in national monuments that were not originally designed for that purpose is common to the world, as in Westminster Abbey. the Invalldes, the Pantheon, and Maes-Howe

Then there is the idea that the sarcophagus was never an actual tomb, but "an open tomb" symbolic of the resurection, and of a reawakening of the dormant spirit of the great initiates.

XX. TEMPLE OF SECRET INITIATION

Several authors have expressed the opinion that there is a close connection between the Great Pyramid and what are known es the Egyptian mystorios, that is to say, the socrot known 88 the Egyptian mystorios, that is to say, the socrol knowledge possessed by a hierarchy of initiales which was communlcated to those who could prove their worthiness by passing a long period of probationary training and severe
trials, the sort of system that was perpetuated or debased by trials, the sort of system that was perpetuated or debased by
suoh societies ae the Templars, the Rosicrucians, and tho suoh soci
Masons.

In due course the initlates are said to have been shown the great laws and principles of the cosmos and of man's relation thereto, which could not be explained to the more or less ignorsnt, "who could not rise abovo tho level of a crude realism which takes things to be what they seem."

The Egypilan temple order is described by modern Fiee Masons as a gradual process of Initiatlon and admission, in which the Great Pyremid was probably used for the initiation of the highest degree, or the three highest degrees in the order.

Throughout the graduated admission, which is sald by Masonic writers to have lasted twenty-two years, the prospective Initiate wse taught the various sciences, of which geometry and numbers were among the most important. "In geomelsy and numbers were among the most imporiant. "f Ancient Geometry, ' it is not surprising that they should have worked this knowledge into the structure of the initiation temple."

Knowledge of the astronomical cycles and their appilcation also formed part of tne ancient Initlatory leaching. In those days, says William Kingsland, astronomy was not the mere scionco of the mechanism of the heavens, but was Intimately connecled with astrology, "e profoundly esoteric sclence connected with the great cycles of man's evotution, understood only by the Adepis."

KIngsland adds that if the Great Pyramid was built by inlliates for initiates, "What could bo more likely than that some of the deeper forces of nature were used in its construction. and that these would-did we but know of them-solive the probiems of construction which still remaln an enigma to us."
The theosophist H. P. Blavataky in The Socrot Doctrine says the Pyramid not only indicated the coursos of the

According to Manly P. Hall, the tllumined of antiqulty passed through the mystic passegeways and crambers of the Great Pyramld. envering its portal as men and coming orltt as gods.
"The cancidate." says kall, "was laid in the groal stone coffin, and for thres daya his splitl-freed from is mortal coli-wandered at the as a bird. llew through the plritusl splisies of space. He discovered that all tho univoise was lite, all the unlverse wes etemes growih. Roalizlog that his body was a house wlich he could sllp out of and retum 10 withoul deoth, he aohieved
actual immortality. At the end of tirrae days he relumed to imself agoln, and having hus personally and aclualty experienced the great eperienced the great iniliato, one who behold and one to whom religlon thad curiled hor duty bringing hlm 0 the light of God."

slars in heaven but was "the everlasting record and the Indestructible symbol of the Mysterles and Initlations on Earth." In isis Unvelled Madame Blavatsky elaborated, saying that whereas oxternally the Pyramid "symbolized tho creative principle of Nature, and illustrated also the principles of geometry, mathematics. astronomy and astrology." within the building liself was the site of the mysteries of initiation-"'a temple of iniliation where men rose towards the Gods and the Gods descended towards men." To Blavatsky the colfer was "a baptismal font upon emerging Irom which the neophyte was born again and became an adept."

Brunds says that during the ceremony of initiation, the candidate wes placed by the temple leader in a deathike trance symbolizing death itself. On awakening from this condltion, "having wandered in the world of the gods," he was regarded as having been reborn.

Search inside

Blavatsky doscribos the ancient rite: "The initiated adept, who had successiully passed throingh all the trials, was allached, not nailed, but simply lied on a couch in the form of Tau ... and plunged into a deep sleep the Sleep of Siloam'). He was allowed to remain in this state for three days and three nights, during which time his Spiritual Ego was said to confabulate with the 'gods.' descend into Hades, Amenti, or Palala (according to the country) and do works of charity to the invisible beings, whether souts of men or Elemontal Spirits; his body remaining all the time in a temple crypt or subterrenean cave In Egypt it wos placed in the Sarcophagus in the King's Chamber of the Pyramid of cheops, and carried during the night of the approaching Cheops, and carried during the night of the approaching
third day to the entrance of a gallery where at a certain hour the beams of the rising Sun struck full on the fece of the entranced candidate. who awoke to be initiated by Osiris, the Thoth and God of Wisdom.

For such a rite to have been possible, etther the pyramid must still have been truncetod, or it contains secret passages al present undiscovered.

Most of the ancient philosophers and great religious teachers, including Moses and St. Paul, acknowiedged or ate acknowledged to have derived their wisdom from the Egyptian initiates, individuals who admitted or hinted they were Initiates Include Sophocles, Solon. Plato. Cicero Heraclitus, Pindar and Pythagoras.

Some of the coremonios of what are sometimes referred to as the lesser mysteries have survived in a more or lese degraded and merely formal manner in the ritual of Masonry and of the Christlan churches. Kingsiand belleves the secret of the Pyramid is even known to present-day inftiates, but is probably "one of those matters which they do not see fit to disclose to the world at large.

According to Norman Frederick de Clifrord, author of Egypt, the Cradle of Ancient Mssonry, ancient Masonry had its origin long centuries before the dawn of authentic history: he claims the ancient brotherhood "possessed a lar greater knowledge of mechanical arts and sciences than is known to architects of the present day

Soveral authors, including W. Marshal Adams, belleve the Pyramid represented in monumental form the doctrine which The Book of the Dead sets forth in script, containing which The Book of the Dead sets forth in script, containing the initiates, or the laws which govem and direct the universe. enabling tie initiate to know "how ho came into being in the beginning."

The Book of the Desd is the title generally given to a collection of Egyptian inscriptions and papyri found in tombs

Search inside
or In mummy wrappinge. Sir E. A. Wallis Budge translated it as The Book of the Mistress of the Hidden Temple. One late lext found with a mummy was on a papyrus roll 20 meters long divided into 165 chapters: it is now in the Turin Museum.

The ancient Egyptians attributed The Book of the Dead to hoth, Lord of Wisdom, and recorder of the deeds of men, which were produced when the soul came to judgment.

Egyptologists in general label it a collectlon ol funerary and rifual texts of different periods in diflerent forms, used by ancient Egyptian pries's in their burial ceremonies. But Henr Furvillo in his La Soionce Seoroto claims that the texts of The Book of the Dead ere incomprehensible to those who ever made a careful study of them from the point of ylew psychic satence. The obscure texts, says Furutle "shine the light of initiation, and lhe practices which seem oxtraordinary and ovon absurd to tho prolone, aro, on the contiary, the resuit of the most profound science."

The problem of translating hermelic language from hieroglyphs is highlighted by Glorglo de Santillana when he points out that in the Erman-Grapow Egyptian dictionaries there are thirty-seven terms for "heaven." As a result, says Santillana, the elaborate instructions in The Book or the Dead retering to the soul's celestial voyage translate into "mystical" talk, and must be treated as holy mumbo-jumbo. Modern translators, says Santlliana, belleve so firmly in their own invention, according to which the underworld hos to be looked for in the interior of our globe-instead of in the sky-that even 370 speciflc astionomical terms would not cause them to stumble. He gives as an example the goddess Hathor boing described as "lady of every joy," when the literal translation is "the lady of every heart circuit." The determinative sign for "heart." explains Santillana, often fgures as the plumb line coming iram the astronomical or surveying device, the merkhet. "Evidently," says Santillana tho hoart is something vory spocific, as it were, the center ol gravity."
J. Ralston Skinner In The Source of Measure was convinced that the Pyramid was not a tomb, but a temple of nitiation. He went further and linked the Pyramid to the Jewish cabala, e system of allegorical symbolism among the Inllated which sets forth the secret leachings of the Bible. concealing the great cosmic principles of man's origin.

According to Skinner the key to the cabala was said to be the geometrical relation of the area of the circle inscribed in the square, or the sphere in the cube. This gave rise to the relation of the diameter to the circuenterence of a circle, with the numerical value of the relation expressed in integrals, such as $22 / 7$

The relation el diameter to circumference, says Skinner, was considered a supreme one, connected wilh the god names Elohim and Jehovah, vie tist being the circumference. the second the diameter, which were numerical expressions of these relations

Tons BrunEs, who dedicated his The Secrets of Ancien Geometry to the Fraternity of Free Masons. shows that the Great Pyramid, llike most of the great temples of antiquity, was designed on tho basis of an advanced but hermetic geometry known only 10 initiates, only fragments of which percolated to the classic and Alexandrine Greeks. According to Brunes. the secret of ihls anclent geometry was so well guarded that the whole of it was not revealed until the publication of his book in 1969.

Brunés shows how the ancient Egyptians used the basic design of a clrcle inscrited in a square to divide both circle and square geometricaliy into equal parts from 2 to 10, and all their possible multiples, without recourse to measuring or arithmetical calcuiations, with the aid of nothing but a straighledge and a compass-common emblems, along with the Pyramid, of the Masonic orders of yesterday and today.
in Brunés' roconstruction of the secret geometry, the cross emerges as the first gcometric addition to the circle and square, and is the key not only to the solution of geometric problems bul to the development of numerats and the alphabet.

By including the dlagonals, every number both Latin and Arabic and all the letters of several alphabets may be obtained.

According to Brunes, both mathematics and the alphabet sprang from geometry, not the reverse. He says that nowadays we use numbers as the primary factor in our calculations, and geometry only as a subsidlary, whereas he belleves the Egyptians reversed the order. He uses a detailed analysis of the Rhind Mathematical Papyrus to domonstrate that the ancient Egyptian system of counting was directly governed by geometric factors and that their Ideas and theories were bound in geometric rules.

Brunés found that the circlo was indeed considered sacred by the Egyptians, as were tho square and the cross and the triangle, all of which are Intimately Incorporated Into the Great Pyramid with its square baseand irlangular faces designed to represent the "sacred" circle.

Brunés demonstrates how the circle inseribed in a square and quartered by a cross enabled the anclent Egyptian geometer to inscribe in a circle the basic ligures of pentagon. hexagon, octagon and decagon.

Of these the pentagon with lis live-pointed star is perhaps

Search inside

$\begin{array}{ll}\sin 3 \\ \operatorname{Sec} 36-Y / 4 \\ \operatorname{Sin} 54 & =0\end{array}$
$\operatorname{Sin} 54=P \%$
$\operatorname{Sec} \pi=29$

The cricle in 8 square with a cross and diagonals, plus a penclent mattlematiclars to mieasure tenotis of $\sqrt{2}$. $\sqrt{3}$. $\sqrt{5}$, as well as multiples and lracilons the roof withou
arihmetical computation
the most Important: It automatleally produces the Golden Section and the p proportion in the simplest geometric mannor

Each line of the five-pointed star-the symbolic sign of recognition of the initiated Pythagorean, whose hermetic meaning It meant death to reveat-cuts the other in the proportion of major to minor: the Golden Section.

Furthormore, the side of a pentagon inscribed in a circle whose circumferenco is equal to the perimeter of the Pyramid will be equal to the apothem, or slant helght. of the Pyramid. which will DE the value of $:$
A pentagon divides a circle in 72° segments. With the main cross, the pontagon radii form angles of $18^{\circ}, 36^{\circ}$, 54° and 72°.

Though Greece has been looked upon as the birthplace of mathematics-largely because of surviving written material on the subjectot mathematics and geometry-Erunés points out that Pythagoras, the founder of Greok mathematics, spent 22 years in Egypt as a priest of the temple, and only returned to Greace atter Gyrus the Great, king of Persia, bumt the temples at Memphis and Thebes in 527 B.C. and dragged him off as a prisoner to Babylon.

Back in Grooco, Pythagoras taught mathematics on the basis of what he had learnt In Egypt; but after his death his followeis were persecuted and had to take refuge abroad. Some eighty years later Plato left Athens after the execution of Socrates and joined tho Pythagorean sociotios. He traveled to Egypt, where he too was Initiated into the lowor traveled to Egypt, where he too was initiated into the lower recovering trom being disbanded by the Babylonlan-Peislan conquerors.

Plato colloctod documents and iwritings connected with Pythagoras. In the end he produced the concept that the cosmos was represented by the five regular solids thal can be inscribed in a sphere.

Brunes maintains that Plato incorporated into the body of his writings, and ospecially in the Timaous, the socrot teachings of the Egyptians, which he had sworn not to divuige directly, but which he handled in a hermelic language for which Brunes provides a solution
Brunés says that Moses, who was atso an Egyptian priost, had knowledge of the anciont goometry, which he passed hermetically In his instructions for building the Tabernace. data which eventually reached Jerusalem and were incorporated into holy teaching.

The French archeologist and mathematician Charles Funk-Hellet, in his La Bible ef la Grande Pyramide d'Egyple, agrees that the cubit of the Bible can only be the Egyptian
royal cubit, which ho makes a hair, or $1 / 2$ millimeter, shorter then Stecchini's. According to Funk-Hellet the cubit was incorporated Into the Temple at Jerusalem as $\pi / 6$, or 523.6 millimeters, Instead ot Stecchinl's 524.1 .

Funk-Hellet points out that Solomon had Hiram Abitf build a temple whose columns were 18 cubits high and 12 cubits around. In other words, one cubit equaled the twelth part of the circumference of the arc of 30°, or $\pi / 6$.

By subtracting the circumference from the height, they oblained 6 cubits in 3 straight lino, which was equal to half the circumferenco, or the exact value of π; so that a thousand years before Christ the Hebrews knew that a cubit was a mathematical entity depencent on the circumserence, and were able to resolve π to four points of decimal.

Using ono unit of meaeure os the radius of a circle, the ancients found the trigonometric value of 30° to be π / θ. which was the value of the royal cubit, or .5236 of the unit used.
$\frac{3.1416}{6}=.5236$
SERIES P

| I | II | III | IV | V | VI | VII | Vill | X | X | XI | XII | XIII | XIV | XV | XVI | XVII |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | XVIII

$24120 \quad 144284408 \quad 872108017522832458474181200019416314785083282248133080 \quad 215328$
 cluding values for.τ. 0 . and the roval cublt: this led him to conjecture that the royal cublt might have had o theorotical value before it had a plactical onc.
The first line gives the numbers 11,17 and 28, which are civisions of both the royal cubls and the Chaldean cublt: furthermore, $11 \times 17 \times 28$ equals 5238 , which is Funk+tellel's figure fot the royal cubit millimelers, or $\pi / 6$.
value of 3.1416 . nd 2618
The seventh column gives the divisions of a 380 -degree circlo in halves, quallors, eighths, elc.

Search inside

Funk-Hollet maintains that as early as the fourth millennium B.C. the Chaldeans had a mathematical series which gave the exacl values of the cublt, the meter and π. Whar's more, he Insists that the presenimeter, as devesoped by the French in the nineteenth century, was already a hermotic moasure known in antiquity, and was linked trigonometrically with the cubit.

To Funk-Hellet the Gieat Pyramid is a geodetic gnomon, or pillar, incorporating vatues for both the meter and the cubit. He says the finger, palm and cubit are built into the apothem. In the King's Chamber, he eaya, the double square of the floor is 5.236 meters by 10.472 meters-which varies of the floor is 5.236 meters by 10.472 meters-which vari
from Petrie's and Davidson's measurements by a lewi from Petrie's
millimeters.

Funk-Hellet says the basic meter unit from which the cubit was derived had to be kept a deep socret, prosumably so that all the calculations, including the means for obtaining the exact length of the year, would remain the sole property of the oftlciating priests.

Schwaller do Lubicz in Le Temple de r'Homme corroborated the evidence that the Egyptians knew the meter, polnting out that on the whole length of a surrounding wall of the Thlro Dynasty (3000102000 B.C.). "one finds three llines painted at the time, of which the distance between two lines is exactly one moter," adding that this is not an isolated case, "but one of thousands." In ancient constructions of Troy, Helnrich Schllemann found a unit of measure which was exactly hall a meter, or 50 centimeters.

Funk-Hellet says the meter and the cubll depended from each other and were boih defined by geodetic measurements. He suggests the way the meter was derived by the ancients was by watching lrom a measured helght the moment a light disappeared on the horizon.

Al the beginning of the nineteenth century, Sir John Herschel tried to calculate the radius of the earth with two observers placed 10 feet above the sea who ceased to see each other at 12,873 ineters. Thls gave Herschel an earth radius 016797 kllometers instead of the correct 6378, or an error of 419 kilometers.

Funk-Hellet believes the ancient Egyptians did better. He polnts out that the full apothem of the Pyramid including the pyramidion is 10,000 tingers long, or 187 meters. He then computes that if 1870 meters is taken as an arc of 30°. tho resulting radius will be 3570 meters. Modern experimonts indicate that a light disappears on the horizon at 3570 meters when the eye of the observer is exactly 1 meter above the ground

José Alvarez Lopez of Argentina, in his work fisica y

Creacionismo, says that a cubit of 523 millimeters-about half a millimeter shorter than Funk-Hellet's and 1 millimeter shorier than Stecchini's is exacily half of what he calls an absofute meter, which he says occurs as a natural unit in the solar system.

According to Alvarez Lopoz the planets of our Bystem orbit in harmonic distances from the sun which are multiples of a single unit of length-his absolute merer-in an arrangement which is naturally decimal.

Alvaroz Lopez says that beginning with Mars, tho plancts are disposed in the order of the colors in the soler speotrum -with Mars as red. Jupiter yellow, Saturn yellovish-green, Uranus green, Neptune blue. and Pluto violet According to Alvarez Lopez the Pyramid may once have been painted with the colors of the spectrum starting with red for Mars, just below the gilded pyramidion representative of the sun, and diminishing through yellow and blue to violet at the base, symbolizing the consinction of the solar system both geometrically and with color.

The only evidence that the Pyramid may have once been painted, apan from the legends of the Arab storyteliers, are some fragments of casing stone found in the early nineteenth century which wore covered with what sppeared to be red paint. Subjected to careful chemical and spectrographic

Alvarez Lopez's tendition of
the dimensions of the coffer used by the Egyptians for basic astronomical
ratlos.

anetysis at the Sorbonne. it was determined that the casing slones had once been covered with a layer of paint wilh a red ochre base, and that the paint could not have been caused by any chemical recomposition of the stone itself.

The Great Pyramid, saye Alvarez Lopez, represents a decimal schema of the solar system. He ligures the height of the Pyramid to be a millionth part ol the dislance to the sun, measured trom the limil of the earth's atmosphere and its base to be the ten-thousandth part of the surlace of the earth.

The dimensions of the granite colfer in the King's Chamber, as worked out by the Argentine professor, are arranged to form a perfect "astronomical atlas": he says the inner measure gives an absoluto cubic motor, but that the coffer was not designed as a cube so that its varlous inne and outer measures could also represent the varlous astronomical constants of the solar system.

He says there was just one way to bulld a coffer so that it would include not only the distance from the earth to tho sun (aa basic astronomical unit), but the weight of the earth, the welght of the earth and the moon, the weight of thesun In relation to the earth, the weight of the sun in relation to the earth end the moon, the weight of tho earth in relation to the moon, the value of the absolute cubic meter, and the polar sadlus (one-half the dlameter from pole to pole) of the earth In terms of an absolute meter.

Alvarez Lopez considers the original discovery of these figures to have been perhaps the hardest job yot mastered by men, and says this explains the care and trouble taken by the builders of the Pyramid to secrete the information In the heart of the bullding. Were the cotter not so badly chipped and wom, says Alvarez Lopez, it might give us more exact astronomicel figures then we now possess.

All these astronomical constanis, says the professor, depend on a precise knowledge of the solar parallax; he is amazed that the builders of the Pyramid could have known the parallax and the earth's polar radius so exactly without the help of tolescopes and cameras. It will be interesting, he says, to compare our new figute tor the sun's parallax with that of the granite coffer, as determined by the near passage of the small planet Eros, which occurs every 37 years and is due in 1975.

Stecchini is more terre-o-terre. He can show that the half meter found by Schllemann is really a Babylonian cubit of 49907 meter and that the meter of Funk-Hellet and de
Lubicz is in fact three feet of .3329 meter, both derived from the goographic foot and oublt.

When I reminded Siccchini that Petrio had found the
colfer in the King's Chamber to be designed in oven numbers of fitths of a cubic cubit, Stecchinl resolved the millennial riddie of the cofter by showing that it contalns exacily 40 artaba, or 40 cubes whose sides are one geographic foot, and thalt its outsido volumo is twico this amount, or 80 cubes of one geographic foot.

Would it not be worthwhile, nonetheless, for academic institullons, so admirably equipped with computers and talent, carefully to analyze such conceits as those of Alvarez Lopez and Funk-Heltet and eilher refute them or support them with reliable data? Some of their ideas may furn out to be no wilder than those for which Jomard. Taylor. Smyth and maybe even Davidson were unjustly lampooned.

Inapoieon's French Institute In Calio.

Search inside

XXII. MORE SECRET PASSAGES AND CHAMBERS

Many Egyptologists and explorers were convinced-and many still are-that the Pyramid conceats one or more secret many still are-that the Pyramid conceats is oned chambers. th is also believed that the Pyramid is connected by subterranean passageways to other pyramids, to the Sphinx, and to long-demolished reception pyramids, to the Sphinx, and to long-demo
halls, small tempies and other enclosures.

The engineer of the Australian railways, Robert Ballard, belleved the Giza pyramids may also have been bullt above a vast series ol catacombs, with chambers and galleiles. like the pyramids of Lake Moeris, which are said to nave vas! subterranean residences for its priests and keepers.

Ballard suggests that much of the limestone for the structure of the pyramids of Giza may have been quarried from such calacombs He suggests that a good diamond drill with two or three hundred feet of rods be used to make tests on the Gize plateau. Ballard believes that when this subterranean city is discovered. it will be found that it had access passages for the priesis and the surveyors linking il to every pyramid.

While the pyramids appeared to the outside worid to have been sealed up as mausoleums for the dead, says Ballard. the sealing may simply have rendered more mysterlous and private the recesses and abodes of the priests who entered from below, and who were posslbly enabled to ascend by private passages to their very summits.

When Perring and Howard-Vyse were exploring the bent pyramid at Dashur in 1839, they noliced an exiraordinary phenomenon. The workmen clearing the passages were suffering from intense heat and lack of oxygen when suddenly a strong cold wind began to whistle through tho passages. It blew so fiercely for two days that the men had trouble keeping their lamps IIt. Mysterlousiy It stopped and no one has yet figured out the mystery.

Ahmed Fakhry, working in the same pyramid in the 1950s, hoard weird noises which led him to conclude that there must be undiscovered passages within or under the bent pyramid.

Edgarton Sykes, an archeologist and author, who is perhaps the best living authority on anclent Atiantis, also

Merodotus speaks of a palace Complex of 3500 chambers complex of 3500 chamb low ground al Moerls. The Egypilans called II "the temple at the entrance to tho lake." Herodotus called it thet it outranked the pyramids as a wonder.
believes there is a whole maze of corndors and passages dug into the Giza hill. Sykes quotes an ancient Arab source to the effect that the designers of the Pyramid made "severa doors. bullt over underground vaults of stone, each with a secret stone door revolving upon a hinge.

Peler Koloaimo bolieves thore ato more tombs and caves beneath Saqqara, Abydos, and Helvan, of very ancient dynasties, and reports the legends of hiddell doors "that could be opened by a mysterious force" such as a supersonic wave length, or specially resonant voice.
According to the Baron de Cologne, as quoted by Robert Charroux in Le Livre des Secrets Trahis (Paris, Laffont. 1965), there is an underground kingdom under the Egyptian desen similar to the "Agartha" of Tibet.

Commander Barbor, the American attache who gave such attention to the construction of the Pyramid, wrote that "when one considers the inexplicable and yet exact arrangement of the various chambers and galleries, and that there is room for 3700 more such chambers, provided we could find them, we can almost be tempted to believe that we have not yet discovered all the chambers or even the true chamber of Cheops ${ }^{\prime \prime}$

Plazzi Smyth was equally convinced that there was an undiscovered chamber in the Great Pyramid "which will prove to be the very muniment room of the whole monument."

Bent pyramid at Dashur. Arrow points to a cocondary the north skide.

When a multitude of chips of black diorite rock wore discovered on the Pyramid hill. Smyth surmised that the undlscovered chamber might be tlned with black dlorite.

Thomas Holland, a Thirly-1hird Degree Free Mason, believed that if the granite loaf ware removed from the portcullis it would dlsclose the way to "magnificent passages and chambers hitherto undlscovered."

Louss P McCarly, in a privately printed booklet. The Grear pyramid of Jeozoh, published in San Francisco in 1907. ays he believes the Pyramid contains at least throo more says he believes the Pyramid contains at least three more chambers located betvieen the King's Chamber and the ape an Chamber. McCariy believes the next largesl chamber will be found at the 75th course, and the largest at the
100th course, and thal the largest should be of an equal capactly to the three betowi il. He believes there is a fifth and final chamber on the 120 th course of masonry, and that this one should be just halt the capacily of the King's Chamber. McCarty also subscribes to tho thoory that thero is a passage somewhere beneath the northeest corner of the Pyramid which leads to the Sphinx.

Funk-Hellet suspects there might have been a room on top of the present platform, now destroyed.

William Kingsland, in his two-volume work on tho Pyramid, suggested generating radio waves of 5 meters lengilh in the King's Chamber, and by noting the sirength of reception at measured intervals all round the outside of the Pyramid, determine it some hidden chamber might exist.

In the tate 1860s Dr. Luis Alvarez, tho 1968 Nobol Prize winner for physlcs, developed a machine for recoreling the passage of cosmic tays through the pyrantid of Kephren, by means of which he hoped to dlscover any secret chambers or passages within ils body.

The operation, which required a team of scientists, turned into an expensive venture in vihich twelve United States and United Arab Republic agencles became Involved, including the U.S. Alomic Energy Commission the UAR Department of Antiquities, the Smithsonian inslitution and the Faculty of Science of the Ein Shams University in Cairo.

Alvarez's project was based on the fact that cosmic rays, which oombard the planet day and night. lose part of their energy as they pass through an object, in
proportlon to the density and thickness of the object.
By placing a "spark chamber" in the subterranean vauit of the pyramid the scientists planned to monitor the number of cosmic rays vitich mado their way through the pyramid walls. Those rays which passed through a void in the body of the pyramid would reach the chamber more frequently than Ihose traversing solid rock, and ithe variance would indicate the presence of a secret chamber or passage In the pyramid

The path of each ray is recorded electronically and stored on a magnetic tape. The tapes are then led into a computer to calculate and memorize the point et which each recorded ray penetrated the surface of the pyramid.

To pinpoint the location of any cavities which showed up, the scientists planned to shift the "spark chamber" and obtaln a sort of stereo picture.

Were any hidden chamber locatod, it would then be possible to dig directly to it without risking greal damage to the rest of the pyramid. The operation would consist of drilling a small hole upward in the indicated direction ot any cavity that appeared on their " X-ray plate." Modem optical tools would allow archeologists to look into the chamber through a tong hole, perhaps 100 teet long and only $3 / 4$ Inch in diameter.

Dr. Alvarez chose the pyramid of Kephren because he considered it unlikely that Kophren, as the son of Cheops, would have had such an imposing pyramid erected without incorporaling some secret system of passages and chambers such as have been discovered in the Great Pyramid.
Alvarez assumed that Cheops' architects must have had a choice of clever ideas for secreting chambers, some of which had to be teft out of his pyramid, but could have been appiled to Kephren's. "My hunch," says Afvaroz, "was that youngor architects working on Cheops' pyramid would have had their ideas rejected. Later. In Chephren's time, they could have persuaded Chephren to use them, or some other improved plans."

Search inside

On this tenuous assumption Alvarez hoped to find a secret chamber in Kephren, and perhaps even the sarcophagus of the dead Pharaoh: an Egyptologist's dream.

Alvarez also chose Kephren's pyramid becauso its central chamber was more convenient for setting up his compiex electronic equipment. The subterranean vault discovered In 1818 by the Italian exploter Giovanni Belzoni had recently been cleared of rubble, and other chambers and passages in the pyramid had been lit with electricity by coble from the nearby Mona Houso.

By September of 1968 two million cosmic-ray rajectories had been measured: these were considered irajectories had been measured: these were considered of the upward-looking oquipment. When the tapes wore run through the local computer in Cairo for the first arralysis, the results looked wonderfil. They clearly

In 1818 the lialian adventurer
Glovanni Belzonitried to find an entrance to the second pyramid of Kephren.
He found what appeared to
be the original entrance close be the orignal entrance close
to the ground plugged by three granite blocks. The pasiago was cleared all the way down loa tunelary chamber contain-
ing only a granito sarcophagus. On the west wall of tne chamber an inscription in
Arabic indicaled the chamber Arsbic indicaled the chamber lime after the Hegita.

Portrat of Giovannl Beizonl used as a rontisplece for a
book odited by his wite commenting on hils exploits in
Egypt.
showed up ine corners and the faccs of the pyramid as outlined by the passing cosmic rays, recorded in the central chamber. The equipment appeared to be functioning excellently. But there were some mysterious developments.

As Or. Lauren Yazolino, Alvarez's assistant, returned to the United Slates to analyze the tapes on the most up-to-date computer at Berkeley, a correspondent from the London Times visited Cairo to check on the results locally. At Ein Shams University, John Tunstall found an up-to-date 1130 IBM computer surrounded by hundreds of lins of recordings.
""I detles all known taws of physics." Tunstall quoted Dr. Amr Goneid, who had been left in charge of the pyramid project since the return to America of Dr. Yazolino.

According to Tunstali's repori, each time Dr, Goneid ran the lapes through the computer a different pattern would appear, and the salient points which should have

Search inside

Diorlte slatue of Kephren dating from the Sixth Dynast
found by Marletta Bey in the so-called Templa of the so-chlied Temple of the
Shlnx, now In the Cairo Musəum.
been repeated on each tape were absent. "This is sclentilically impossible," Tunstall quoted Goneid, explaining that earlier recordings which had ralsed the hopes of a great discovery were now found to be a jumbled mass of moaningloss symbols with no guiding pattern whatever.

Tunstall asked Goneld: "Has all this scientific know-how been rendered useless by some force beyond man's comprehension?" To which Goneid is reported to have answered: "Either the geomerry of the pyramid is in substantial error, which would affect our readings. or ther substantial error, which would affect our readings, or ther Is a mystery which is beyond explanation-call It what
you will, occultism, the curse of the pharaohs, sorcery, or you will, occultism, the curse of the pharaohs, sorcery, or
magic; thore is some force that defies the laws of science magic; thore is some force that defies the laws of science at work in the pyramid."

At Berkeley, Alvarez refuted Tunstali's account. Insisting that the equipment was functioning admirably. In the 35° cone scanned by the spark chamber there was no sign of any hidden passageway or chamber. This was the area believed by the scientisls to be the most likely 10 contain them, though there was still hope of linding something in tho romalning sections.

As soon as further funds were avallable the team of scientists planned to resume their scanning of Kephren. Dr Yazolino added that if sufficlent funds were available they might even move thoir equipment to the Queen's Chamber in Cheops to sec If they could find any unknown passages or chambers in the Great Pyramid.

Yazolino explained that the only trouble they had encountered had been poor readings when the spark chamber ran out of neon and produced some mysterious dark spots which looked like a possible chamber IIII they were carefully analyzed and found to be caused by the gap between two spark chambers

Alvarez stressed his confidence in Dr. Goneid as a very able physicist, saying that he thought so much of him he had invited him to spend a year at his lab at Berkeley. "II I thought for a moment that he had said any of the nonsense attributed to him, you can be sure I wouldn't want him as a member of my research group."

Yet there remains something mysterious about the pyramid which needs to be explatned

When a Frenchman, M. Bovis, visited the Great Pyramid he noticod that some garbago cans in the King's Chamber contained dead cats and other small animals that had apparently wandered into the Pyramid and died,
there was something odd about these corpses: there was no smell or decay to them. Curious as to the cause

Search inside

of this phenomenon, Bovis oxamined the animals and found them dehydrated end mummified, despite the humidity in the chamber.

Bovis wondered if the mere shape of the Pyramid could have been responsible for this natural process of ombalming: so he made a wooden model of Cheops with a base three feet long, and oriented it due north. Inside the model. a third of the way up, he placed a rreshly dead cat After a lew days it mummilied. Bovis then placed other organic materials in the model, especially matter that organally deceys very quickly, such as call's brains, and normally decays very quickly, such as call's brains, and
when these failed 10 putrefy, he concluded there must be when these failed io putrefy, he concluded there m something about the shape of the Pyram
prevents decay and causos dehydration.
A Czechoslovakian radio engineer named Karel Drbal
read Bovis's reports and made some further experiments with pyramid models, conctuding that there is "a definite relation between the shape of the space inside the pyramid and the physical, chemical and biological processcs going on inside that space.

The same phenomenon has been noted in thaty and Yugoslavia where milk packaged in pyramidal cartons keeps fresh indefinitely without refrigeration. A French firm has also patented a pyramidal container for yogurt.

Dibal wondered it the shape might be responsible for an accumulation of electromagnetic waves or cosmic rays,

Search inside
or of some unknown energy. Placing a used razor blade within a slx-inch-high cardboard model of Cheops' pyramid, orlented to true north, Drbat tound that the edges of the blade automatically recovered their sharpness after use, that ho could shave with ono Giletto bluo blade as many as 200 timcs. He concluded that the envitonment inside the pyramid somehow made the ciystafs in the blade retum to thelr orlginal form. Drbal was Issued patent no. 91304 by the Czechoslovak patent office and began inanufacturing "Cheops Pyramld Razorblade Sharpenors" out of cardboard. Today they are belng made of styrofoam.

An engineer and former professor of radio. L. Turenne. maintains that all sorts of different forms-being combinations of different fiequencies-act as differeni types of resonators for energy in the cosmos. This has lod to speculation that the Pyramid might be some sort of glgantlc lens which is able to focus an unknown energy simply by means of its shape.

Even the coffer In the King's Chamber has been considered such a device by worth Smith, who points out that the cubic capacity of the coffer is exaclly the same as that of the biblical Arc of the Covenant.
According to Maurice Denis-Papin, descendant of the famous inventor, the Arc of the Covenant was a sort of electric capacitor capable of producing an eloctrical charge of 500 to 700 volts. The Arc is said to have been made of acacia wood. lined inside and out with gotd: that is to say, two conductors separated by an insulator. On ither side wore garlands which may havo served as condensors. Denis-Papin says the Arc was placed in a dry spot where the magnelic lield reached a normal 500 to 600 volis per vertical meter

Insulated from the ground, the Arc is said to have given off fiery rays, acting like a Leyden jar. According to Oenis-Papin the capacitor was discharged to earth by means of the garlands. To move the Arc, two golden rods were slid through rings attached to the exterior
The similarity ol such an "energy accumulator" to the orgone box developed by Wilhelm Reich, which was such a puzzle to Albert Einstein, is also striking.

Sir W. Siemens, the Biltish inventor. relared that one day whille he was standing on the summit of Cheops' pyramid an Arab guide called his attentlon to the fact that whonever he raised his hand with his fingers outspread an acule ringing noise was heard.

Raising just his index. Slemens fell a distinet prlckling II. Wher he tried to erink trom a wine bolle he had brought along he noted a slight electric shock. So

Siemens moistened a newspaper and wrapped it around the bottlo to convert it into a Leyden jar. It became increasingly charged with electriclty simply by being held above his head.

When sparks began to issue from the wine bottle, Siemens's Arab guides became distrustful and accused him of practicing witchcraft. One of the guides tried to seize Siemens's companion, but Slemens lowered the bottle towards him and gave the Arab sucn a jolt that he was knocked senseless to the ground. Recovering, the guido scramblod to his feet and took ofl down the Pyramid, crying loudly.

Such welrd but soberly recounted tales aboul the Pyramid are tame compared to the willder conceits that have been propounded by pseudoscientific, scienco-fiction end sensational authors. According to one science-fiction theory, the Pyramid was used as a huge protecting baffle for ancient scientists who had found a way to tap the energy of the Van Allen betts by lelting it flow on an ionized path through the armosphere to the peak of the Pyramid, possibly on a laser beam. The authors of thls science fictlon recount how an error was commitred in the length of time the energy was allowed to flow, causing an avalancho of power which knocked the planet off its axis.

Another popular idea is that the truncated Pyramid served not merely as an observatory bul as a landing pad for extraterrestrial space ships. The polished sides of the Pyramid would havo made such a platform inaccessible to the hoi polloi, so that godlike visiting astronauts could have confabulated in security wlith the hiloh priests who had access to the platform trom interior passages. Herodotus lends romance to the idea that ziggurats and pyramids were steppingstones for the gods from heaven and that the King's Chamber-which Petrie found to be built qulle separately from the surrounding Pyramidcould have served as a reception room on the truncated platform.

Herodotus describes a reconstructed ziggurat which he visited in Babyion. "On the topmost tower there is a spacious temple. and inside the temple stands a great bed covered with fine bed-clothes, with a golden table by its side. There is no statue of any kind set up in the plaoe, nor is the chamber occupied at night by any but a slngle native woman who-say the Chaldean priests-Is chosen by the deity out of all the women of the land. The priests also declare-but I for one do not credit it-that the god comes down in person into this chamber, and sleeps upon the couch."

In the light of recent scientific discoverles, one more theory must be added to this world of fable: that the Great Pyramid was bulli not only as an astronomical observatory but as an astrological one in order to make accurale large-scale horoscopes for the reigning monarch.

XXII. ASTROLOGICAL OBSER VATORY

Though many of the doctrines of astrology appoar to be proposterous, modern science is beginning to indicate that in its original form astrology may have been based on some reasonable theories.

Proctor points out that the ancient Egyptians viewed the king es the representative of all the pcople in their relations with the forces of the cosmos, and the world of spiritual powers.

On the theory that what was good for the king was good for the country, Proctor suggosted that tho Egyptians made no move in either domestic or foreign policy withou the recommendation of their astrologer priests. whose opinions were based on the movement of heavenly bodles as scanned from a pyramidal observatory.

Once the king was dead, Proclor believes, his body may have been burled within the pyramid and the platform finished oft to a polnt.

The idea that the shifting of heavenly bodies bears some relation to men's falc is so ingrained that peoplc are still called martiai, jovial, salurnine or lunatic; the days of the week are still named for sun, moon and planels; and our religious festivals are slitl based on the astrological system of ancient Egypt, with Christmas tied to the winter sylstice and Easter to the spring equinox.
In his 7he Sclentific Basis of Astrology. published in 1969, Michel Gauquelln describes some of the eftects of the motions of the sun and moon upon teriestrial phenomena. Apart from such obvious effects as the seasons, the growth of vegetation and the tides, he deals with the less apparent but equally powerfut eflects of the eleven-year cycte of sunspots on our flora, fauna and inhabitants.

Sunspots, which appear like dark flowers on the surface of the sun, spring up, develop and disappear. As they do so, the sun spews up fantastic incandescent clouds of gas, and whips up huge magnetic whirlwinds.

Rotating on its axis in a twenty-seven-day cycte, the sun periodically aims these spots and eruplions directly at the earth. The result is an Increased projection of waves and particles towards the earth. In the words of Gauguelin. "we terrestrians can regard oursolves as living in the interior of the sun."

Search inside

The position of the earth in its orbit atso affects the
 Theors: when Venus and Earth are ine same side unspors. when Vere the the is combined. The the sun, in il ind ill duration of the day; the earth's magnetic fields are disturbed; there are radio interferences and other such mysterious phenomena. Al the same time the earlh is subject to bsmbardment by galactic particles such as Alvaroz's cosmic rays, which also have their elfect.

Sunspot activity hos boen related to such different phenomena as the number of icebergs in the North Atlantic, the level ot water in lakes. the concentric rings in the growth of trees and the number of rabbit skins taken by the Hudson's Bay Company. Even the quality of wines in Burgundy is affected, excellent vintages corresponding to periods of maximum solar actlvity.

Sunspots have been proved to aftect the smallest cells. and the world of microbes is disturbed to the point that waves of epidemics cen be generated. Gauguelin quotes Doctor Fauré to the effect that the frequency of diphtheria cases in Central Europe and of smallpox dictims in Chicago follow the eleven-year cycle of
 sunspots, as did the reourrent greal plagues of typhus and cholera in Europe.

Indireclly. most of the phenomena of weather, such as barometric pressure and the rate of winds, depend on the oruptions of sunspots. Gavquelin wonders if there may not be more subtle eflects on the air we breathe, on our physical and mental states, and even on the way we think.

Recent experiments indicate that subjects breathing air charged with positive ions are likely to feel discomfort. hoadachos and giddiness: whereas when the almosphere hoadachos and giddiness; whereas when the aimosphe
is full of negative ions the same subjects feel cheerful, relaxed and in top lorm.

The concentration of positive and negatlve ions in the air we breathe depends in the final analysis on solar activity The ionosphero is filled with positive and negative ions. The ionosphero is filled with positive and negative ions. atnosphere are directed toward the earth by the sun. Unlortunately. negative lons have a tendency to attach themselves to ciouds, whereas positive ions tend 10 accumulate on the ground.

Such data tie in with the theories of Wilhelm Reich about the healihful elfecis of what he calls "orgone energy" and the toxic eifects of its counterpart "deadly orgone," which was reputed to tum rocks brown, make strong men giddy and bring on womon's menses out ot season.

Current research and experiments behind the Iron Curtain as reported by Osirander and Schroeder in their Psychic Discoveries Behind the Iron Curtain' have added even more lantastic details to the use of astrology as a science

These authors describe a Czechoslovak Minislry of Health center, complete with modem computers, run by gynecologists and psychiatrlsts. It is called Astra Research Center tor Planned Parenthood and uses astrological dala, of the position of sun, moon and planets in relation to the birth of an individual, in order to assure a sale and reliable means of birth control without pills, contraception or operations. The same system is being used to help seemingly sterile women become fertile, help women who have had nothing but miscarriagos delivor full-torm babies and even allow them to choose whether they will have a boy or a girl child.

In a book calted Predetermining the Sex of a Chlld, Eugen Jonas, a Czech medical doctor who developed the Astra clinic, mainlains that women's cycles are affected not oniy by the phases of the moon, but that each individual al birth is affected by the baslc pattern of sun moon and planets. From this basic pattom Dr. Jonas claims to be able to figure out the exact days in a woman's enlite Iffetime when she can conceive, as well as the ones which are the best or worst for a lorthcoming child. The woman may then lake advantage of such days, or avoid them.

Jonas found that dead, deformed and retarded children were produced vhen women conceived during certain oppositions of the sun, moon and major planets.

The system is now being tested in Hungary as well es Czechoslovakia, where Dr, Kurt Rechnitz, former director of the Budacest Obstelric Clinic prescribed astrological birth control for one hundred twenty women. None was reported pregnant.
it has been too short a period to establish the validity of such data, but the endeavor could prove more rewarding than voyaging to the moon. It would certainly be simpler for a lady in New York to step into the booth of an astrological computer in Grand Central Station in order to arrange her calendar of engagements for the year. to arrange her calendar of engagemenis ior might do wonders for an overpopulated planet.

Jonas' good-humored complaint is that most gynecologists know as little about astronomy as astronomers know about obstetrics, and that both believe
astroogy to be supersitious nonsense. If the disciolines ware combined, the results, says Jonas, might be great tor mankind. Had the designers of the Great Pyramid been able to monitor the sunspots with a scricen across the Grand Gallery, as suggested by Procior, and had they been aware of such phenomena as has been described by Dr. Jonas, they may well have been able to use the Great Pyramid as a moans of providing accurate astrotogical dato on which to formulate the charts for individual behavior, if not for the thronging masses. at least for the pharaohs. priesis or nobles.

In his book on the Great Pyramid William Kingsland declares flatly that the ancient Egyptians used "their protound knowledge of what we calt the outer facts of astionomy" to connect them astrologically with the principles of man's relation to the cosmos, and that this formed part of the concealed knowledge contained in the mysteries

Kingsland noles that from the very remotest antiquity the Egyptians believed firmly in an afterlite and were not afraid to think cosmically in terms of militions of years He quotes an introductory hymn to Ra in The Book of the Dead as saying: "millions of years have gone over the world: I cannot tell the number of those through which thou hast passed.

To Kingsland The Book of the Dead, though it appears to be a ritual for funerary rites of a decoasod king or high officlal, was actually a description of the trials, templations and difficulties which the adept had to meet and overcome as he progrossed from knowledgo to knowledge and as he progrossed from knowledgo to knowledge and
from power to power, as he penctrated the superphysical from power to power, as he penetrated the superphyslcal regions from plane to plane. The uitimate goal of Inllation. saye Kingsland, was "the full realization of the essential divine nature of man, the recovery by the individual of the lull knowiedge and powers of his divine splritual nature. of that which was his source and origin, but to the consciousness of which he is now dead through the 'Fall of Man' Into matter and physical life."

The old Greeks, says Kingsland, learning from the Egyptians, embodied these trials and difficulties of the great Initlates into the legends of their heroes and demigods.

Maniy P. Hall, a litelong researcher Into the mysterles of ancient initialion, says the Great Pyramid was dedicated to the god Hermes, the personilication of Universal Wibdom; it was not only a temple of inillation but a repository for the socret truths which ho calls the foundation of all the arts and sclences. The time will come, says Hall, when the secret
wisdom shall again be the dominating religious and philosophical urge of the viorld: "Out of the cold ashes of ifeless creeds, shall rise phoenix-like the anclent Mysteries The unfolding of man's spirilual nature is es much en exact science as astronomy, medicine and jurisprudence."

Whatever mystical, occull or sclence-fiction tales may be associated with the Great Pyramid, it is still an extraordinary piece of masonry, and its designers must have been extraordinary beings. Who they were and when they bullt their Pyramid remains a mystery. So the quest continues.

But certain tacts must be contronted, and the textbooks amended to conform with them. Eratosthenes was obviously not the first to measure the circumference of the earth. Hipparchus was not the inventor of trigonometry. Pythagoras did not originate his famous theorem. Mercalor did not Invent his projection-though he did visit the Greal Pyramid and leave his graffito to prove it.

Whocver built the Great Pyramid knew the dimensions of this planet as they were not to bg known again till the seventeenth century of our era. They could measure the day, the yoar and the Great Year of the Preccssion. They knew how to compute latitude and longilude very accurately by means of obelisks and the transit of stars. They knew the varying lengths of a degree of latitude and longitude at different locations on the planet and coutd make excellent maps, projecting them with a minimum of distortion. They worked out a sophlsticaled system of measures based on the earth's rotation on its axis which produced the admirably earth-commensurate foot and cubit which they incorporatod in the Pyramid.

In mathematics they were advanced enough to have discovered the Fibonacci series. and the function of π and φ What more they knew remains to be seen. But as more is discovered it may open tho door to a whole new civilizatlon of the past, and a much longer history of man than has heretolore been credited.

APPENDIX

NOTES ON THE RELATION OF ANCIENT MEASURES TO THE GREAT PYRAMID

by LIVIO CATULLO STECCHINI

The following pages constitute an abstract from a lifelong research into the history of measures. I became interested in this subject toward the end of my secondary oducation, when I was trying to put lo some use my eight years of Latin and Greek grammar. It was then that I became an acolyte of Angeto Segre, whom I knew as a fellow law pro fessor with my father at the University of Catania. Segre was a scholar of Roman law, but, coming frome family of distinguished scientisls and mathematicians, had specialized in the study of anclent measures.

Upon completing my secondary education, I ended my study with Segre to registor as a atudont at the University of Freiburg, Germany. Since al thal age one believes that a thinking person musl have a philiosophical foundation, I chose Frelburg because it was the university where Husser taught, whose philosophy appealed to me because of its mathematical rigor. But at Freiburg at the moment the focus of altention was the philosopher Heidegger, who had just announced to the world the discovery of something called existentialism. I did not share the excitement of my fellow students for tho new disponsation (although I liked the lectures on existentialist mathematics by Oskar Eecker), but there were a couple of things that I learned from Heidegger. One was that the Idea of the progress of human civilization, on which practically all historians operate, is a theological doctsine developed by the Church Fathers. The other. more specific. was that scholars of Greek culture have murdered the texts of early Greek philosophers. on the assumplion that since they were early philosophers they must have had intantlie conceplions. In the area of

Search inside
my vocational studies, I identified myself with a group of prolessors, led by Fritz Pringsheim, who had dedicated themselves to one toplc. the contract of sale in anclent times Since seminar work consisted in interpreting contracts from several areas of the eastern Mediterrenean, I focused my attention on the clauses relating to measures, which these contracts contain in abundance. My teachers were tolerant of my passion: for instance, Otto Lenel in his privatissimum, dedicated to the development of postclassical Roman law, allowod me to read a paper on tho length of the miles in the Syro-Roman Law Book.

After the Frelburg group was disbanded by Hitier. I returned to ttaly, where I received a doctorate in the fleio of Roman law. On that basis I became assistant to the chair of history of Roman law at the Univorsity of Rome and a member of the Institute of Roman and Oriental Law of that University. During my Roman years, I leamed the mos from Edoardo Volterta, later holder of the chalr of Orlental law at the University of Rome; he was sympathelic to my intorosts, since he was tho son of the famous mathematician Vito Volterra.

When World War II brought me to the United States, since my interests were historlcal rather than legal, I registered as a candidate for a doctorate in ancient history at Harvard University. There I discovered thet those who come to ancient history from literature have a completely different view of the anclent world from the praclical realistic, and utilitarian view which prevalls in legal studies: in substance they see the ancient world as the realm of poetic fantasy. My Harvard teachers used to admonish me to understand "the splrit of the ancients," but the only Image that thelr perorations could stir in my mind was the image of the anclents in a constant state of alcohollc stupor. As to my special lield of research, my teachers stupor. As to my special lield of research, my teachers
thought that my notion that the Greeks ware concerned with precision in measurement was intellectually prepos terous and historically impossible.

The terms of the controversy were clarilied for me by Werner Jaeger, who thed to support me by suggesting that I wrile under him a thesis on the concept of akribeia, "precision," in Greek thought. In outlining the proposed thesis. Jaeger explained that with Isocrates there was developed in Greece a new conception of humanism opposed to akribeia. Jaeger was impliying that my critics were followers of tsocratean humanism. Because of youthful stubbornness, I declined the tlattering offer of Jaeger, belng convincod that what counts is to put precision Into practice, rathes than to talk about it. I tried to prove my point by
submitting a thesis on "The Origin of Money in Greece." It was accepted as containing much that was valuable, but I recelved the advice that before publishing it I should cut down on "all those numbers.

Aftor this, I thoughl thal I could still achieve a result by expanding my documenlation. From the study of Greek monetary welghts and the operation of Greek mints. I passed to the topic of the dimensions of Greex temples. The study of Greek lemples much later lod me to the study of ancient geography and gcodesy. But I was gradually of ancient geography and gcodesy. But was gradually
lorced to accepl the fact that scholars of anclent history lorced to accepl the fact that scholars of ancient history do not read numbers, neither in anclent texts nor in remitted a paper for judgment to a spocialigt of a particular arca, that he would quickiy turn a page it he saw numbers on It. In many different guises I was told that "numbers do not constitute evidence In ancient studies." Finally, I learned that I had no choice but to pursue my interests in splondid Isolation,

About ten years ago I exchanged manuscripts with Hertha von Dechend. who was then beginning to write her book Hamlet's Mill. As an expert of ancient cosmology, sho raised a strong objection to the fact that I would discuss length, volume, and weighl for hundreds of typewillten pages, without ever mentioning time, whereas the anclents were dominated by the preoccupation with cosmic time. with the movement of the vault of heaven. I answerod that she was right, bul that I had not yet lound in the texts anything that would establish a connection between lime and other measures. Glorglo de Santillana, who was writing Hamler's Mill together with Dechend, reased me in a friendly way by saying that I had become so stuck in the mire of economic documents that I could nol lifl myself out of it: I replied in the same hair-serlous tone that I was willing to lift my eyes to heaven only on condition of being sure that my feet remained firmly planted on the ground.

Although I recognize that astronomical measurements arc extremely important, I have always been wary of dealing with them, because studies of anclent astronomy have become clutsered with metaphysical and theological doc trines. My opposition to the viow that the ancients lived in a world of fantasies or even of outright hallucinations (as It is specifically clalmed by scivolars of ancient asiron omy) is such that, atter yaars of dealing with all sorts o measurements, I still feel most at ease with agrarian measures in cunsiform tablets, rates of money exchange in Greek inscriplions, or the volume of lars in papyri from Egypt. Yet the techniques of land surveying used in Maso-

Search inside
potamia are a key to the understanding of how the anclents mapped the sky.

Because of my horror of metaphysical or pseudometaphysical intruzions, I had several times picked up and then dropped the problem of the dimensions of the Great Pyramid of Giza. II was only afier Peter Tompkins took upon himself the task of organizing the literature in the field, separating sense from nonsense, that I gained the courage to deal with the problem to tho point of some courage to deal win the problem io tho point of some coty of the Gieat Pyramid Tompkins explained how the elty of the Greal Pyramid, Tompkins explained how the Great Pyramid with is galieries could have been used to measure Ing the possibic procedures, he pointed out how a second of lime in the motion ol the vaull of heaven corresponds to a definite length on earth For me this was a Gallean revolution in that it permitted me to see ancient astronomy in terms of observational techniques based on measure ments, rather than systems based on the theological persuasions or the psychological projections of the modern Investigators. Once I was able to link time together with length, volume, and veight, a number of scattered researches suddenly became related to each other. Up to thal moment I had had the uncanny feeling thal somewhere there was a piece missing. and I knew that a missing piece, even a little one, is vital when one deals with measurements.

Since Tompkins has asked me to write a summary of my findings that relate to the problem of the Great Pyramid. I have trled to comply with his request.

1. EGYPTIAN GEODETIC SYSTEM
2. The prosent Arabic name of Egypl is ol Misri, which is the equivalent of the biblical Misraim. This name is derived from the Semiltic io0t which in Akkadlan gives the verb asaru, "to cut, to delimit, to delineate," and hence "to draw a picture, a plan," and the noun oṣortu, "drawing "to draw a picture, a plan," and the noun osserlu, "drawing plan, representation," applied in particular to the spec
cations for the construction of a bulding. In Semitic language an " m " before the rool of a verb forms what we would call a past participle: Egypt is the country built according to a geometric plan.

The Egyplians expressed this idea by calling their land To-Mera. "the land of the mr." The word $m r$ is used to refer to the pyramids, but more specificatly is reters to the meridian triangle of a pyramid, whose hyootenuse is the apothem. The mr essentially is a right triangle with an angle of 36° and another angle which of necessity is 54°

Since the Egyptians did not have trigonometric tables, Since the Egyptians did not have trigonometric tables,
they usod this triangle to obtain the value of trigonometric functions. They conceived of this triangie as the basic bulldino block of the cosmos. They used this triangle o modifications of it by a few degrees in geomettic constructions, in the planning of buildings, in surveying, and in goography.

In the last century the Egyptologist Karl H. Brugsch noticed that the hieroglyphic sign for $m r$ when used in the name ro-Mera is accompanled by a determinative in the form ot a tret or Greek key. In hieroglyphtic writing a determinativo is an oxtra sign which helps in understanding the meaning of a word by indicating the class of concepts which the word belongs. Brugsch obseived that this fret is "a pecullarly shaped geometric fiopure which in principle could represent the entire land Mers and must have a mean ing pertaining to a specilic peculiarity of Egypt "But, although he was much more sympathetic to science than Egyptologists usually are, he did not pursue this line of reasontng. He resisted accepting the notion that the Egyptians conceived of their country as having an exact geometric shape.

The Egyptians were proud that their country had some unique geographic features which could be expressed in ngorous geometric terms and had a shape which related to the order of the cosmos as they saw it. They belleved that when tho gods croatod the cosmos they began by building Egypt and, having created it perfect, modeled the rest around il.
2. Everybody knows that Egypt is a most pecullar, almost unique, country Since it seldom rains there, the entire life of humane, animals, and plants depends on the water of the Nlie. It is also known that the Egyptians linked the regular flood of the Nile with the movement of the sun and other heaventy booles, such as the star Sirlus. But the Egyptians put great siress also on the geographic pecull arities of the course of the Nilo.

The Nlie orlginates at the equator from lakes so immanse that their water could be identified with the primeval water of the ocean. From the equator it moves north following substantially the meridian of is source at lake Albert. It follows this line up to fatitude 30°, one-third of the distance from the equator to the pole.

The key geographic position in Egyptian geography was tha southern tip of the island today calied al-Warraq, at the northern limit of the city of Cairo, where the Nlle begins to divide Into branches to form the estuary which the Greeks called Delta, altet the triangular shape of the
fourth letter of their alphabet the apex of the Delia. the lip of the istand al-Warrag, is cut by meridian $31^{\circ} 14^{\circ}$ east This meridian indicatos the main lino of the course of the Nile from the equator to the apex of the Delta ond divides the Deita Into two equal parts. It was considered the main axis of Egypt.

But in terms of latilude the apex appeared at first not as perfect es it should have been, since it was at latitude $30^{\prime \prime} 06^{\prime}$ north and not al the perfect latitude $30^{\circ} \mathrm{co}$ north, which is the latliude of the Great Pyramid of Giza But the Egyptians reassured themselves by observing that the southern limit of Egypt is indicatod by the First Cataract, The upper edge of this cataract is et the perfect latitude $24^{n} 00^{\circ}$ north, whereas Its lower edge is at $24^{-} 06^{\circ}$ north. Hence, Ihey could say that Southern Egypt has an extension of $6^{\circ} 00$, which may be counted either from $24^{\circ} 00^{\circ}$ to $30^{\prime \prime} 00^{\prime}$ north or from $24^{\circ} 06^{\prime}$ to $30^{\circ} 06^{\prime}$ noth. They adopted as a principle that geographic distances are measured by units of 6 minutes ($1 / 10$ degree). They assumed that the interval between the equator and the pole was divided into bolts (in picturos they portrayed actual bells with clasps) of 6^{\prime}; on the basis of this the Greeks introduced into our geography the term zone. which in Greek means "belt.

For the benetit of those who understand mathematics, I may add that the Egyptiane analyzed curves by dividing the area under a curve into e serics of rectangles, which is the basic principle of integral calculus. It seens that in analyzIng the curvature of the earth. they used rectangles 6 ' wide.

Geographically Egypt is divided into two different parts. Southom (or Uppor) Egypt is ossentially a canyon cut into the desert plateau by the Nile; it is long and narrow. Northern (or Lower) Egypt is a typlcal estuary. swampy and wide. In spite of the eftorts of the ruters to stress the unity of the country, the two patts continued to be conceived as different even in political and administratlve terms. This is the reason why the Hebrew word for Egypl, Misraim, has the grammatical form of the dual. The Pharaoh wore Iwo crowns on his head: a red straw hat tor Northern Egypt and a white wool cap for Southem Egypt.

Although not much is known about the history of predynastic Egypt, it seems rather well established that in this period the two Egypts viere unified for a time, with a capital at Behdet at the extrome north of the curvod coastline of the estuary, as far north as one could go in Egypt. Although archeologists have not yet Idenillied the location of Behdel, the data of geography indicate that Behdet, either as a geodetic point or as an actual city, was at $31^{\circ} 30^{\prime}$ north $31^{\circ} 14^{\prime}$ east. It was on the maln axis of Egypt and of the

Nile, on the meridian of the apex of the Delta, at a distance of $7^{\circ} 30^{\prime}(1 / 12$ of arc of meridian) from the southern boundary of $24^{\circ} 00^{\prime}$ north and at a distance of $1^{\circ} 24^{\circ}=1.4^{\circ}$ from the apex. The distarice from latitude $30^{\circ} 00^{\circ}$ north is $1^{\prime \prime} 30$ so that it could be assumed that Southern EgyDt relates to Northern Egypt as $4: 1$. Southern Egypt is $1 / 15$ of arc of meridian and Northern Egypt is $1 / 60$. We shall see that the total length of Egypt from $24^{\circ} 00^{\circ}$ north to Bohdet was calculated as $1,800,000$ geographic cubils. Since 400 cubits is a stadium and 600 stadla is a degree. It is a length of 4500 sladla (3600 stadla for Southern Egypt and 500 stadia for Nothern Egypt).

This is the way in which tho dimensions of Egypt were rationalized in the predynastic period.
3. The dynastic period begins with the final unificalion of the two Egypts. At this moment Egypt emerged from prohistory, because writing was invented in the form of hieroglyphs. At the same timo the geodotic system of Egypt was revised, s!ressing the importance of the number 7 and linking the geography of Egypt with the geography of the heavens.

The main featuro of the map of the sky is that the sun follows a course which is at on angle with the equator. The circle marked by the sun is called the ecliplic and the angle of this circle with the circle of the equator is the angle of the ecliptic (roughly 24°). The ecliptic cuts the plane of the equator at two points and roaches its highest and lowest points in relation to the equator at celestial latitudes which are marked on the surface of the earth by the troplcs

The moon and the planets in their movements around the earth follow substantially the line of tho ocliptic, baing at times noth and at times south of the course of the sun, (The body which deviates most sharply trom the ecliptic is Mercury. Mercury can be as much as $7^{\circ} 00^{\circ}$ north or south Mercury. Mercury can be as much as 7 of north or south was markod in tho heavens a great "highway" (hodos in Greek) in which thero moved the sun, the moon, and the planets. Thls path is 14° wide and is the origin of the concepl of the zodiacal band. Since Mercury deternines its dimensions and determines them by a perlect figure, in ancient religions this planel was asscciatod with the god of measurement. it was conceived thal the sun, the moon, and the planets were engaged in competing with each other running in the racing course of the zodiacal band. Another conception was that there werc two walls, running parallel 14° apart, within which there was going on a ball game. The notion of a wall accounted for the fact that
the heavenly bodies could not go beyond a given distance from the ecliptic: they appeared to run away from the ecliptic, hit a wall, and bounce back past tho ectlptic to hit the wall on the other side. This is the ritual origin of racing competitions (such as the Olympic races, on foot or in charlots) and ot ball games. The most vivid expression of the second conception is the famous ball court in the Mayan city of Chichen Itza; the structuro of this ball court can be understood when one realizes that its iwo paratiel side walls are unfoded cylindricat profections of the sky.

The zodiacal band was conceived to be the inhabited part of the sky; tho rest of the sky was still and lifoloss (erèmos, "doscrt, desolate," in Greek), because nothing moved in II , except for the rotallon of the vault of heaven in a solid block. Mence, in order to make a map of the sky for the study of the moving heavenly bodies, it was enough to draw a map that reaches latitude $31^{\circ}\left(21^{\circ}+7^{\circ}\right)$. Such a map could be drawn in the form of a cylindrical projection without substartial deformation; this cylindrical projection was untolded to form a rectangle.

On the besis of this concoption, stress was put on the fact that Egypt begins al the line of the tropic of Cancer (the upper edge of the First Cataract is at $24^{-0} 00^{\circ}$ north) and extends north for 7°, so that Egypt could be considered as the equivalont on earth of the northern half of the zodiacal band. For the sake of mapping the earth from the equator to the northern limit of Egypt. one cculd use a cyilndrical projection. The maximum deformation in such a type of projection could be determined; it was established that a degree of longitude at paralle! $31^{\prime} 06$ north is exectly $6 / 7$ of a degree of longitude at the equator. According to the Clarke Spheroid a degree of equator is 111.321 meters, of which $6 / 7$ is 95.418 meters*: according to the samo Spheroid a dogres of longitude at $31^{\circ} 06^{\prime}$ is 95,407 meters. To the north of latitude $31^{\circ} 06{ }^{\prime}$ norlh there was the expanse of the Mediterranean. the "Great Green" for the Egyptians, which oould be compared wilh the expanse of the emply sky, north of the same celestial latitude.

The angle of the ccliptic has decreased slowly floday it is $23^{\circ} 27^{\prime}$; it was about at $23^{\circ} 45^{\circ}$ in the age of Ptolemy), and accordingly the tropic of Cancer has moved south. This movement is due to the gravitational pull of the planets, particularly Jupiter and Venus. Nobody as yet has succeeded in conslructing a valid formula for calculating the angle of the ecliptic in ancient times. But, it is a tact that when tho socond goodotic systom of Egypt was established it was assumed that the tropic of Cancer was at $23^{\circ} 51^{\circ}$ notth. Greek schotars living under the rule of

Search inside
the last Egyptian dynasty, tho Ptolemios, continued to quoto this ligure, alihough it was not correct al their time

If the tropic is at 23. 51^{\prime} ' north, it would follow that the southem border of Egypt is out of place. But the discrepancy was rationatized by considenng the fact that when one follows the movement of the sun along the acliptic by observing the shadow cast by a pointer, there must be introduced a correction of about 15. The position of the shadou is nol determined by the center of the sun, but by the upper limb of the disk. The apparent diameter of the sun is about half a degree; calculating exactly, it varies between $32^{\prime} 30^{\circ}$ and $39^{\prime} 28^{\sim}$, according to the seasons, but, considering the corrections that have to be made for the nomenon of irradiation the flgure ot 15 ' or the halt tiameter of the disk of the sun is satistactory.

If the tropic of Cancer is at $23^{\circ} 51^{\circ}$ noth, the point at which the sun is at the zenith at noon of the day of the summer solstice is at $24^{\circ} 06^{\circ}$ north, that is, at the latitude of the tower edge ol the Firsi Cataract. Hence, the Egyptian onceived that the line of the tropic of Cancer was marked by throe parallols: $23^{\circ} 51^{\prime}, 24^{\circ} 00^{\prime}$, and $24^{\circ} 06^{\prime}$ north.

For this reason the hieroglyphic symbol for Southern Egypt consists essentially of three parallel lines with a vertical line rising at the middle. Since hieroglyphic writing aims at being colorful and pictorially decorative, this symbo was stylized in the shape of a trunk of a tree from which there sprout three parallel tiers of branches. Egyptologists who do not want to recognize the existence of scientfic hought in Egypt have stressed the Incidental vegetal apourance of this symbl they have understont that ap pearance of this sher the the保 he heat, or ine sun, or the sun it solstice," means "the and of the plan shima." Buy it there was such a plan asolaled it is possiy Ibpl (which as yel has nol been idenified). it is possibly the same plant which is called amsu, sunflower in Akkadian; the word samšu means sun" in Akkadian (Hebrew: semes). in a lext of the Olic Kingdom in which the hierogiyphs are drawn with particular care. In the symbol for shemau there is only one tier of branches, but the trunk slarts from a litile arc, a semicircle, which obviously symbolizes a parallel, But what probably is most revealing is that in most hieroglyphic texts the liers of branches sprout from the botlom of the trunk and not from its top.
4. Once the latitudes of the southern limit of Egypl were rationalized by Ideniffying the IIne of the tropic with three paraliels the first of which cuts the lower edge of he First Cataract at $24^{2} 06^{\prime}$, the second cuts the upper
edge of It at the perfect lalitude $24^{\circ} 00^{\circ}$, and the other cuts the Nile al $23^{\circ} 51^{\prime}$ norih, at a place which the Greeks called Parembole, "supplement. addition'), it became possible to rationalize the boundary between Southern Egypt and Northern Egypt. This boundary was understood as marked by three paraltels. the list at $30^{\circ} 06$, the latlude of the apex of the Delta, the second at the perfect latitude $30^{\circ} 00^{\prime}$. and the third al latitude 29' 51°

In the administration of Egypt, the area between 29' 51^{\prime} and $30^{\circ} 06^{\prime}$ north was organized as a special district which did not belong etther to the Itst of nomes (provinces) of Southern Egypt nor to that of nomes of Northem Egypt. The hieroglyph for this district is a rectangle which is either emply or filled with water or fish. A distinguished Egyptologist, being at a loss for a better explanation, has read this hierogiyph as "fishpond." He did not realize tha a rectangle, eilher empty or filied with water or fish, is the symbol of the Square of Pegasus. In Hamler's Mill, de Santillana and Dechend have presented illustrations of this symbolism occurring all over the globe (between pages 434 and 435). There are in the sky four stars which are at a distance of about 15° from each other and mark a square with sides that run according to the celestial meridians or parallels: these four stars form the Square of Pegasus. In iconography this square was at Ilmes portrayed as tille with water or fish, bocause it was in the constollation of Pisces. The Square of Pegasus was considered the starting point In the mapping of the sky. The ancients, from the Sumerlans to the Romans, in surveying lind began by marking a square of a standard dimension and then pro ceeded to messuro out of it in a checkerboard pattorn. In cuneitorm texts the name iku is given to the basic surveying square, to a unit of land surface, and to the Squate of Pegasus The hleroglyph used to refer to the district extending for 15 ' from Memphis-Sokar to the apex of the Delta indicates that this district was considered the basic reference unit from which there started the mapping of Northern and Southern Egypt

The capilal of united Egypl was established at Memphis, at latifudo $29^{\circ} 51^{\prime}$ north. But sinoe the capital city of nocessity had to be on the bank of the Nile, which here runs slightly east of the apex, the geodetlc point was set to the west of the city in the funerary area (the city of the dead is always to the west of the city of the living), on the basic meridian $31^{\circ} 14$ east. This was the DOint called Sokar. the name of which is preserved by the present village of Saqqara ($29^{\circ} 51^{\prime}$ north, $31^{\circ} 14^{\prime}$ east). In the religion of the Old Kingdom, Sokar is an important god of orientatlon

Egyptian papyrus depicting Sokar, the god ol orientation The oadoet on top of the保ı measuring rulor (and also ine symbol for the sky). The two pigcons facing each othor ne standard glyph for meridians.

and of cemetenes. The god and the geodetic point were represented by the stone object which the Greeks called ompholos, "navel"; it is a homisphere (the northem emisphere) resting on a cylinder (Ihe foundations of the cosmos). Usually on top of Sokar, as on sop of any omphaios, there are portrayed two birds facing each other: in ancient conography those two birds, usually doves, are a standard yymbol for the stretching of meridians and parallols.

The practice of placing the geodetic center in the city of the dead was followed by King Darlus the Great, when he established a new capital for the Persian Empire. Porsepolis. Historians have wondored why Darius should have chosen for Persepolis a most inconvenient location; actually the capital of Persepolis was seldom used except or ittualistic purposes Persepolis is at latitude $30^{\circ} 00^{\prime}$ north and three units of $7^{\circ} 12^{\prime}$ east of the main axis of Egypt ($31^{\circ} 14^{\prime}$ east). Tho reason for choosing units of $7^{\circ} 12^{2}$ is that the Persian Empire was mapped by drawing a series of geodetic squares. east and west of Persepolis, which axtend 6° in letitude from $30^{\circ} 00^{\circ}$ to $36^{\circ} 00^{\circ}$ north and have a width of $7^{\prime} 12^{\prime}$ of longitude, since $7^{\prime} 12^{\prime}$ of longitude s equivalent in aclual length to 6° of latitude at the midole point betweon $30^{\circ} 00^{\circ}$ and $36^{\circ} 00^{\prime}$ north. Hence, these geodetic squares are true squares. The geodetic point of Persepolls, $30^{\circ} 00^{\circ}$ north. $52^{\circ} 50^{\circ}$ east, is north and west of the wide expanse of the royal buildings and is identilied by the tomb of King Darius, around which there were buill the ombs of his successors. At the geodelic point 30"00. north, 52* 50° east, there could be erected tombs, bul hero was not the kind of ground on which there could be stretched a cabital city.

The location of Memphls-Sokar had the advantage of being exactly 8^{\prime} north ol the point where meridian $31^{\prime} 14^{\prime}$ east cuts again the course of the Nile at tho Socond Cataract. In a new imporialistic spirit, Egypt in a wide sense was understood to end al the Second Cataract
5. According to the new conception which Innks Egypt with the sky it Southern Egypt extends 6° from the tropic, Northern Egypt must oxtend only T^{c} to the north of tho spex, in order to be in agreement with the order of the cosmos. Hence, the northern fimit of Egyot was set at parallel $31^{\circ} 06^{\prime}$ north

This was achieved by identifying the northem limit of Egypt with the line that joins the two outer ends of the estuary of the Nile. This line extended $\mathbf{1}^{\circ} 24^{\circ}=1.4^{\circ}$ east and west of the axis $31^{\circ} 14$ - east. Hence, there was marked a triangle, which the Greeks called the Delta, with a base line extending from $31^{\circ} 38^{\prime}$ to $29^{\circ} 50^{\prime}$ oast atong parallel $3^{3} 06$ north and a vertex at the long-established point of the apex of the Delta. This isosceles triangle is divided by merldian $31^{\circ} 14^{\circ}$ into two right tfangles of the type mr . In catculating the proportions of this triangle, one must keep in mind that at latitude $31^{\circ} 06^{\prime}$ north, 1.4° of longitude corresponds to 1.2° in actual length, since the degree of longitude is shrunk by $1 / 7$ at this latitude.

The base line of the mathematical triangle of the Delta fell perfectly at the eastorn end. Here the corner of tho Delto coincides with the well-defined natural boundary point Pelusium. along the slore. On the westem side the corner of the Detta did not fall right on the shore, but at the middle of a coastal lagoon: even today the oastern boundary of the Westem Desert province of Egypt passes through it.

The old geodetic center of Behdet was not completely gnored. since it could be fitted into the system by considering that it is 1.4^{5} north of the apex of the Delta
have stated oarlier that it was assumod that at Iatitude $31^{\circ} 05^{\circ}$, the degrec of longitude is $6 / 7$ of the degree of equator. This calculation permitted the rationalization of the shif of the key posttions of Egypt by 8 to the north of the perfect latitudes $24^{\circ} 00^{\circ}$ and $30^{\circ} 00^{\prime}$ north. The shif was related to the polar flattening of the earth, which according to the septenary order of the cosmos, was assumed to be $1 / 280$. If the earth were a perfect sphere the degree of longitude which is $6 / 7$ of degree of equator would be al latitudo $31^{\circ} 00^{\circ}$ (cosine $31^{\circ} 00^{\prime}=0.85717$; $6 / 7 \approx 0.85714$).

Anticipating what I will explain in greater detail later, I must mention here thal the dimensions of Egypt wore recalculated in lerms of a new unit of lengih. the royal
cubit, which is oblained by adding a seventh hand to the usual six which compose a cubit. in terms of this longer cubit, the length of Egypt from $31^{\circ} 06^{\prime}$ to $24^{\circ} 00^{\circ}$ north was set at $1,500,000$ cubits. The royal cubit summed the sepenary spirit of the new geodetic system.

In nieroglyphic writing the name for Northem Egypt is ro-Mehu. Most Egyptologists, following the line ot reasoning which I have mentioned in relation to Southern Egypt, have understood thal To.Mohu means "the land of the papyrus," bul the name of the papyrus is Mly, and the symbol for Northem Egypt cannot be compared with a papyrus plan vorthem Egypt cannot be compared with a papyrus plam Egypt can be expleined when we consider that it is similar the name of the cubit (mahe in Coptic), which comes rom a root which means "10 lill up." Hence. To Mehu may mean "the land which fills up the dimensions of Egypt. Northern Egypt corresponds to the seventh hand added o the cubit.

From what we have of early writing attempls from predynasilc Egypl, it is absolutery clear that the symbol for Northem Egypt used to be the red straw hat. With the boginning of tho dynastic period, the creation of hieroglyphic writing, and the new geodetic system, the symbol of Nothern Egypt becomes a plant wilh three stems springing from one rool. It some cases the reference to he triangularity of the Della is emphasized by putting at the end of each slem a flower with a triangular calyx. In carefully drawn representations the plant springs from a rectangle either empty or filled with the wavy line for water, rectangle either empty or filled with the wavy line for water, which is the symbol for the in
from $29^{\circ} 51^{\prime}$ to $30^{\circ} 06^{\prime}$ north.

At times the stems in the symbol for Northern Egypt are broken and bent at the top. This may be a reference o the fact that in the new geodetic system the northern limit was lowered from $31^{\circ} 30^{\prime}$ to $31^{\circ} 08^{\prime}$ noth.

On the two sides of the throne of the Pharaoh there was a dosign which Egyptologists call "Unity of Egypt." We know it well because it appoara in all statuos of Pharaohs sltting on the throne; the series of such statues starts with the Fourth Dynasty, but occasional drawings indicate that the design "Unliy of Egypt" is older in the course of centuries the design varied somewhat and the arlists who carved the throne stylized it according to different tasles; but on the basis of what I have explained above, one can always recognize that it represents the geodetic system of Egypl.

The center of the design is the hieroglyphic sign for the verb "to unite," which is a windplpe with two lungs.

Hoviever, in the design "Unity of Egypt" the windpipe is stretched, so that il looks tike a long trunk of a tree, in order to indicate the main axis of Egypt; the lungs are reduced to a diminutive size. On one side of the windpipe there is the symbot for Northern Egypt and on the other side the symbol for Southern Egyot. But what is mosi signillicant is that the entire drawing is tied together by a system of ropes and knots, which indicato the goodotic linos and pointe of Egypt.

The design called "Unity of Egyot" is the standard decoration of the royal throne, because it symbolizes all that the Egyptians held fundamental in their political, ethical, religious, and cosmological conceptions, a cluster of ideas which they summarized by the word maet, a word with which I wil deal in a following chapter. Nevertheless, this design has received only casual attention The best way in which I can convey in brief how this design is pregnant with meaning is by refersing to Hebrew Cabalistic literaturo. The Cabala is a Hebrew underground religion or philosophy. The starting point of Cabalistic doctrine is that God in creating the world began by creating the ten numbers and arranged thom according to a diagram of points and connecting lines, which proves to be modeled on the desion "Unity ot Egypt." Actually, what gave me the flrst Insights into the Egyptian geodetic system was the reading of tho ltalian Renaissanca scientists who were Influenced by Hebrew Caballsts.

The stale of Israel has adopted as its national emblem the Cabalistic symbol of two overlapping triangles. These two triangles should be seen as inscribed in a circle: they represent the poles, the tropics, and the ccliptic, besides having the added meaning of the male and female elements coming together to generate the cosmos. The Founding Fathers adopled as the seal of the Uniled States a pyramid they wanted to convey the notion that a perloct society had been organized, and in order to convey it they adopted a symbol which, through the tradition transmitted by masonic societies. goes back to the Egyptian Idea of maer.
6. The geodetic system established at the beginning of tho Old Kingdom vras modified in part with the advent of the Twelith Dynasty, the most dynamic of the Egyptian dynasties as far as we know. The advent of thls dynasty marks the beginning of what scholars call the Middle Kingdom pcriod. But probably more significant in Egyptian terms was that the advent of this dynasty coincided with the beginning of the age of Anes. It became necessary to revise the system of cosmology, since the sun had moved out of the constellation of Taurus to enter into that of

Aries. The kings of this dynasty identified themselves with ine god Amon, symbotized by the ram. The lirst king of the dynasly called himself Amenemhet, introducing tho custom of theophoric nemes, that is, of personal nemes composed with the name ol a god. The god Amon was made to spring from relative obscurity Into the position of the spring from relasive obscurity inio the position of the main olricial divintty of Egypt. It seems that up to that Thebes or that Amon was identified with a local god Thebes or that
of that area.
The Twellth Dynasty moved the capital and the peodetlc center of Egypt io a more central position, Thebes. The longitude of the new capital was determined by the point where the eastorn axis of Egypt ($32^{\circ} 38^{\prime}$ east) cuts tho course of the Nila. The latitude was $2 / 7$ of the distance from the equator 10 . He latitude was $2 / 7$ of the dislance was marked Dy the central room of the temple of Amon. in which the god and the geodetic point most probably was indicated by the same object, the omphalos, "navel," which used to represent the god Sokar, what is certaln is that when centuries later in the caplial of Nubia. Napata. there was built a second temple of Amon in order to link Nubia with Egypt politically, in the center of this temple there was placed such an oblect.

Egyplologists have tried to torture Egyptian Ilrguistics in order to explain why the Greeks should have given the name Thebes to a city which the Egyptians called Wast. Tho likely explanation is that the Greeks learnod the name of the city from the Phocnioions, who in their own language called it thibbün, "navel." There is textual evidence that in Hebrew, which is practically the same language as Phoenician, the word thibbùn is used to reter to a geodetic naval.

The choice of the latilude emphasized the septenary system of Egyplian geography. The ancients divided the space between the pole and the equator into seven zones. This is indicated not only by Greek writers of geography, but also by the ziggurats of Mesopotamia and the earties pyromids of Egypt, which are step pyramids.
7. It was possibly on the occasion of the transfer of the capital and geodetic center to Thebes. which stresses the importance of the eastern meridian of Egypt ($32^{\circ} 38^{\prime}$ east), that something was done to rationalize the longitude of the First Cataract. The First Cataract happened not 10 be inciuded in the rectangle of Egypt, being somewhat to tho oast of meridian $32^{\circ} 38^{\prime}$, at $32^{\circ} 53^{\prime}$ east. The lower edge of the cataract, at $24^{\circ} 06^{\prime \prime}$ north, $32^{\circ} 53^{\circ}$ east, is 15^{\prime} north 01 the right position and 15 west of it. It must have been
disturbing that the southem boundary of Egypt should not It with the system of three meridians passing through the three angles of the Delta triangle. Hence, the area of the First Cataract was oxtended southward atong the course of the Nile up to the point where meridian $32^{\circ} 38^{\circ}$ east cuts the course of the Nlie. This point happens to be at $23^{\circ} 00$ noth The new point $23^{\circ} 00^{\prime}$ north, $32^{\circ} 38^{\prime}$ east was called Sacred Sycamore and was set as the legal boundary of Egypt. Tho stretch of the Nile from the Sacred Sycamore to he First Cataract was altached to the district of the Flist Cataract. In Hellenistic times this altached district was called Dodekaschoinos, which in Egyptian would be "twelve alur." The alur, as I will explain later, wes a unit of ength such that slightiy more than 14 (14 in practical computations) went Into a degree. If the distance of 51 between $23^{\circ} 00^{\prime}$ and $23^{\circ} 51^{\prime}$ north, the correct line of the tropic, is calculated as 12 atur, it means that counting exactly a dogroe would be 14.11765 otur. The Egyptians used two types of atur: an atur of 17.000 geographic cubits $(7848.8$ meters) and an alur of 15.000 royal cubits (7862.2 meters). Now, 51^{\prime} at latitude 23° to 24° is about 94,135 meters, whoroas 12 atur of the first kind is 94.186 meters and 12 alur of the second kind is 94,346 meters.

Even lhough the district Dodekaschoinos was attached Egypt purely for mathematical reasons, it continued to be included in Egypt into the Roman period.

I suggest that the establishment of the supolementary district Dodekaschoinos with a new southem boisndary of Egypt at $23^{\circ} 00^{\prime}$ notth was Inked with the transter of the capital to Thebes, because there is a text which gives the dimensions of Egypt from the sca at Peluslum (eastern corner of the triangle of the Delta) 10 the end of the distric Dodekascholnos. that Is. all along meridian $32^{*} 38^{\prime}$ east The distance is divided into fivo-thirds from Pelusium to Thebes and one-third from Thebes to the Sacred Sycamore. If we round the latitude of Thebes from $25^{\circ} 42^{\prime} 51^{\prime \prime}$ north to $25^{\circ} 42^{\prime}$ north, the calculation is perfect:
$31^{\circ} 06^{\circ}$ 10 $25^{\circ} 42^{\prime}$ north $=5 \cdot 25^{\circ}$
$25^{\circ} 42^{\prime}$ to $23^{\circ} 00^{\prime}$ north $=2^{\circ} 42^{\circ}$

When the southern Doundary of Egypt is moved to the Sacred Sycamore by adding the district Dodokaschoinos, the Tomple of Amon in Thebes is in a rational position not only in relation to arc of meridian, but also in reation to the extension of Egypt.

The text that gives the information just mentioned indicates atso that the latitude of Thebes has a further peculiarily: at this latitude the degree of longitude is $9 \% 10$ of degree of equator.

Search inside
11. EGYPTIAN UNITS OF LENGTM

1. All the measures of length, volume, and weight of the ancient world, including those of China and India, constituled a rational and organic system, which can be reconstructed starting from a fundamental unit ol tength. have not yet compieted the gathering of data concerning the units of precompreted ine gathering of data concerning the units of pre-Columbian America, because these are difficull to oblain, since the motrology of the American continen has received meager atiention; but tho figures that I have succeeded in astablishing so lar suggest that the American units agree with those of the Old World. The unlls used in Europe up to the adoption of the French metric system woro the ancient ones or modilicalions of them introduced for specific reasons. The ancient system of measures continues to be used today in the form of English measures: we find the basic units of the English system. such as the pound of 453.8 grams. used in Mesopotamia in the third millennium B.C.

The eflort to reconstruct the original and unitary systom of measures was started by scholars of the Renaissance as a result of the beginning of the age of geographical discovories. Their investigations, although they took the form of antiquarian rosoarch, had two practical purposes: to interpet correctly the data provided by oncient geogto interpret correcily the data provided by oncient geographers and to establish an absolutely reliable and fix standard of length. Although the major concern of Rena ssance investigators of measures was to establish the oxact value of tho ancient Roman foot. they were also concerned with a tradition to the effect that all measures wers derived from the Egyptian ones. This is the reason why John Greaves went to measure the Great Pyramid of Giza, in order 10 complete his researches on the length of the anciont Roman foot. In Egypt Gresves met with Burattini, who had gone to measure the monuments of Egypt, in order to establish the linear starting point ffor which he coined the name meter) in his proposal for a new metric system which would be strictly decimal, like the one lator adopted as the French metric system. Greaves had the advantege of having spent a long time in Rome moasuring buildings, vessels, and weights and of being provided with accurate measuring toots, based on English units: Burattini od the advantage of having already measured a number of had ine advantage of having arready measured a number gyptian buildi Gres woutd provide a solution to their problems. After this survey would provide a al Pyra Greaves returned to England, leaving his measuring tools with Buratini, who continued the study of Egyptian monuments.
On his return Greaves published the results obtained at Giza,

Egyptian moasuring tule carved out of wood showing various lingers. palms. and
cubits (at prosent in the Turin Musem).
results which were later interpreted by Newton. But Burattini had the ill luck to be sobbed of his notes by Hungarian brigands while on his vay to Poland. As a result, when he published his proposal for a decimal metric system, for lack of a better alternativo, ho advocated thet one should star with the English foot and divide the cube of this foot decimally in order to obtain the units of volume and weigh

The study of Egyptian measures received a new impulsion with the Napoleonic expedition to Egypt and the consequent deciphorment of Egyptian hieroglyphs by Champollion. This decipherment had been unsuccessfully altempted by Father Athanaslus Kircher, viho had sponsored 8 urattinl's expedition to Egypt. In the first hatf of the nineteenth century, it was established that the Egyptians had a septonary system of linear units.

In the ancient world one measured by feet and cubits. The cubit is equal to $1 \mathbf{1 / 2}$ feet. The cublt is divided into 6 hands of 4 fingers each (24 fingers) and the foot is divided into 4 hands (16 fingers). The division of the foot into 12 inches, with which we are familiar, became common only with the Romans. According to the Roman reckoning ine cublt is 16 inches The inch was considered to be the thickness of the thumb; gonerally in the ancient wortd one preferrod to reckon by fingers, assumed to be the thickness of the other four lingers. It must be kept in mind. however, that terms like ioot, cubit, linger, and inch were introduced in order to give a name to units obtained scientificalty, units which correspond only vagucly to the natural units of the same name.

Scholars of Egyptology concluded that the Egyptians had started with a foot of 300 millimeters and a corresponding cubit of 450 millimetors, divided into 16 and 24 fingers as in the rost of the ancient world, but then had adopted as their linear basic unit a cubit. called a royal cubit. of 525 millif. meters, The toyal cubit is composed of 7 hands, or 28 fingers: It is an ordinary cubit with a seventh hand added.
2. One can find examples of septenery units also oulside Egypl. The use of measuring rods of sever feet is common In medieval and early moderin Europe. A typlcal example of septenary unlts is the Russian sajen', which is composed of 7 English feet and is divided into 3 arshin of 28 Inchos. The sajen' was the basis of the Russian system of measures until the Soviet government adopied the French metnc system in 1918.

The reason for the occurrence of septenary units is that they were convenlent in practical reckonings. Agrarlan unils of surface were arranged in a series in which each was double of the preceding one. It was ossumed in practical
reckonings that a square with a slde of 100 was the double of a square with a side of 70 and the half of a square with e side of 140 . This implies that $\sqrt{\mathbf{2}}=1.414214$, taken as equal to 1.4. A tyolcal example of thls reckoning is the area of to 1.4. A typlcal example of this reckoning is the area o 5000 square cublis. within which a Jew can move on ine Sabbath, which is described by the Talmud as "the square of seventy cubita." When greeter precision was desired in practical reckonings, one averaged the results of conside $14 / 10$ of the side $(1.42857+14 / 2=1.41428)$

10 of the side $(1.42857+14 / 2=1.41428)$
Septenary units were used also in order to tacilltate other
Septenary units were used also in order to tacilltate other
pactical reckonings. The height of an equilateral triangle practical reckonings. The height of an equilateral triangle
being equal to $\sqrt{3} / 2$ of the side, the relation can be laken as 7:6. since $12 / 7=1.71428$ and $\sqrt{3}=1,73205$.

According to the septenary system of reckoning, the circumferonce was considered $22 / 7$ of the diameter; the approximation $\pi=31 / 7=3.142857$ is still used today as an adequate approximation in many problems of engineering.

The figure $22 / 7$ used to obtain the value of T in practical reckonings is related to the fact that the ancients used both septenary and undecimal (i.e., eleven-besed) units in order to achieve easy computations in practical reckonings. Undecimal linear units were common In the anclent and early modern world; an example of them is the English chain of 66 feet. An acre, originally a square with sides of 70 yards, is now 10 square chains (4840 sq. yards).

An importanl practical problem involving the number \mathfrak{y} was solved by the use of undecimal units Units of volume were legally defined as cubes, but measuring vessels were buill as cylinders. All that an ordinary potter, who could be an Illiterate person, had to know was that, in order to construct a cylinder equal in volume to a given cube, he had to take the height and width of the cube and use them as the height and diameter of the cylinder, provided he measured the cylindor by a ruler based on a unit of length increased by $\$ / 10$. The procedure results in a cylinder of slightly excessive volume. If we assume a cube with a side of 10 tingers. Its volume is 1000 cubic lingers, A cylinder with a diameter of 11 fingers and height of 11 has a volume of 1015.4 cubic fingers. But this small excess wes auto maticaliy corrected in practice, since a measuring vase mus have a rim and cannot be filled to the brim. A fllling line marked on the measuring vase sligntly below the brim took care of the difference. I first became aware of this procedure in interproting cuneiform mathomatical loxts, but later I found it referted to in Athenian inscriplions and applied concretely in Athenian measuring vessels.

By combining calcutalions by the factor 7 and calculations
by the factor 11, one could solve practically a number of geometric problems involving irrational numbers. This practice is one of the reasons why the builders of the Great Pyramid began their plan with a helght of 280 royal cublts and a side of 440 .

A simple example of the combination of reckoning by septenary and undecimal units is the following. As I have said, In agrarian units it was assumed that a square with the side of 100 is the double of a square wlth a side of 70 and hall of a square with a side of 140 . This procedure would result in units of the following surface:

49.000 100.000
 100.000 196.000

In order to make the series more regular, the middle unit was often taken as a square with a side of 99 , so that the serles became:

49.000 98.010
 98.010 108000

When Herodotus reports the surface of tho sides of the Great Pyramid, he reckons by units of surface calculating by the second paltern.

Although the use of septenary units had been common in ancient times and later, in Egypt the septenary cubit became a netional symbol related to the essential structure of Egypt and of the cosmic order.
3. In the second hall of the nineteenth century, some scholars of ancient measures tried to derive them from the Egyptian units of length. Although in the last fifty years it has become fashionable amongscholars of ancient cullures to deny that they had any knowledoe of a scientific system of measures, all serious scholars of ancient and medieval measures have always known that all measures of volume and weight ere derived from the units of length. Units of volume were obtained by cubing the units of length. Units of welght were obtained by filling the units of volume with rain water at ordinary temperature; this water has the same denstiy as distilled water at s. Contigrade adopted by the French metric system, since in the earlier procedure the impurities of the rain water compensaled for the higher temperature.

Friedrich Hultsch, who was the most authoritative investigator of ancient measuros in the later part of the last century, concluded his lifelong research by announcing just before his death Ihat all ancient measures could be derlved from the Egyptian foot of 300 millimeters and from the corlesponding ordinary (not septenary) cub:t of 450 milti-

Search inside
meters. He also supported the view expressed by others that the Egyptian unit of woight called qedet, of 9 grams, s the basic unit of weight of the ancienl world.
But Hulisch lell a difilcully unsolved. If ne cube an Egyptian foot of 300 millimeters, we obtatn a cube of 27,000 cubic centimeters or grams, which is divided into 3000 qodel of 9 grams. If we cube an Egyptian ordinary cubit of 150 millimeters, we obtain a cube of 91,125 cubic centimeters or grams. which is divided Into 10.000 qedel of 9.1125 grams. Sample weights indicate that both qedet were used in Egypt. A qedet of 9 grams relates to a qedet of 9.1125 grams as $80: 81$.

The same discrepancy occurs all over the ancient world. Prince Mihall Sutzu, Director of the Natlonal Bank of Rumania, having dedicated his life to the study of ancient weights, in 1930 concluded that the qedot of 9 grams is tho bozels fundamentalc alc motrologici ponderolo din antichitate, but, in order to explain the mentioned discrepancy in weights, but, in order to explain the mentioned discrepancy in weigh supposed that there had been a gradual decrease from

But In prosenting this explanation Sutzu contradicted one of his basic assumptions, which is the amazing slability of measures throughout history. From the very beginning of iterate cultures. documenis indicate an extreme concem with tho presorvation of exact motric standerds. The concem with precision seems to have lessened in the course of history. Early modern Eurode was less careful than medieval urope. The Greeks of the Hellenistic age were less carolul than those of the classical age. Even though the Greoks of the classical age seem to have been obsossed with the problem of correct standards, they did not reach the subtiety of Eoypt and Mesopotamia. One of the reasons why the study It ine history of measures was actively pursued in the tate of me history of measures was actively pursued in the tate
Renaissance was that by that lime standards had started to waver.

Thare were two factors which determined extreme concern with absolutely exact standards: units of lenglli were used to measure geographic distances, and units of weight were used to measure gold and silver used as means of cxchango

The amazing slability of measures is indicated by the ctrcumstance that the kilogram was established by relating it to the Paris livro which was directly related to the Roman libra. The official definition of the kilogram is such that the livre equals 489.5058466 grams. Since the livre was divided into 9216 grains (16 ounces of 24 scruples of 24 grains). the Paris grain according to this definition is 0.05311478 gram. Historlcally the Paris livre was established by
flxing the Paris grains as $1 / 6100$ of the ancient Roman libra, the Roman libra being 324 grams (5000 English grains or 36 Egyptian qedet. It the original slandard had been preserved, the grain of Paris would have been found at the moment of adopiton of the French metric system to be 0.05311475 gram and the livre to be 489.5055737 grams. in
 Roman libra sppear to have been well preserved, even though those who established the French metric system did not consider the theoretical foundations of the livre, but simply averaged several sample weights which were avail able. However, scholars of the seventeenth century complained that Paris measures were not very clearly defined and had conctuded that Engllsh units of weight were more exactly defined

The English grain has remained stable as $1 / 5000$ of a Roman libra. English weight units have not changed at all since Sumerlan times. The oldest weights of which I have found mention in an archeological report are those excavated at Tepe Gawra in Iraq, near the present ail center of Mosul. The lowest strate of Tepe Gawra embody the very first steps of the transition from village ilfe to urban life. The earliest weights of Tepe Gawra precede by about a millennlum the invention of writing. According to my interpretation theso weights are frsctions of the present English ounce avoirdupois of 28.350 grams ($1 / 16$ pound, which is $7 / 5$ of a Roman libra).
4. Betore explaining why there was a qedet of 9 grams and a qodot of 9.1125 grams, I must deal with a much more serious difficuity met by Hultsch.

He assumed that all rneasures of the anclent world can be derived from the Egyplian foot, but could not solve the absolutely essential problem of explaining how the Roman foot of roughly 296 millimeters could be derived from the Egyplian foot ol 300 millimeters.

The key to the solution of this problem was provided to me when in 1942 the archeologist August Oxé, at the end of lifelong resoarch, published a monograph explaining that almost all units of volume and weight of the ancient world exist in two varieties, related as:

$\begin{array}{llllllll}125 & 25 & 50 & 62.5 & 75 & 100 & 125 & 190 \\ 12 & 24 & 48 & 60 & 72 & 96 & 120 & 144\end{array}$

He called the tirsl senes units brufto, and the second series units netto. The reason for tho existonce of the second series is that it is impossible from the practical point of vlew to divide decimaliy a cube into smaller cubes.

Developing the olscovery of Oxe, 1 arrived at the logical consequence that units of length must usually occur in two

Search inside
varieties, one which is the edge of a cube containing a unit brutto and one which is the edge of a cube containing a unit netto. The two varietles of units of length are related as $\sqrt[3]{25}: \sqrt[3]{24}$. I call the first group of unils of length by the name of natural units and the sccond group by the name of trimmed units.

From an Egypllan cubll of 300 millimeters we derive: Bastic talont brufto of 27.000 cublc centlmeters of grams
1000 Roman ounces of 27 cubie contimotore or grams
3000 Egyptian qeadet of 9 grams 3000 Egyptian qeatel or 9 grams

It follows that the cube of the Roman fort (which tho Romans called quadrantal, or pes quadratus) must be 24/25 of the preceding unit:

> Basic tolent notlo of 25.920 cublc centimeters or grems
> 960 Roman ounces ol 27 cubic centimeters cr grams 2880 Egyptian qeder of 9 grams

The Roman quadrantal or basic talent netto is divided Into 80 librae of 324 grams (12 ounces or 36 qedel). The llbra ia equal to 5000 English grains.

Accordingly I could establish that the Roman foot relates as $\sqrt[2]{24} \cdot \sqrt[3]{25}$ to the Egyptian foot ot 300 millimeters, and hence is a unit of 295.9454 millimeters, which is a figure in egreemont with the empirical evidence.

Having established the theoretical basis of the Roman foot and of the Roman quadrantal. I could dispose o! a dificulty which had bedeviled scholars since the Renaissance. By examining the empirical eviderice it had been established tha the Roman foot oxisted in two varieties, one shortor (called pes Statilianus by Renaissance scholars) and one longer (called pes Aebutianus). Correspondingly, there were two varieties of Homan libra.

The explanatlon lor this differenco is that units of volume and weight may occur in two varietics related as 80:81, with a difference which I call discrepancy komma. In 1909 Jean Adolphe Decourdemanche, at the end of his book on Arabic measures. added a proviso explaining that all Arabic units of weight and volume occur in two varieties rolated as $80: 81$ My teacher Angelo Segre, in studying the mcasures of Hellenistic Egypl, found that, although the cube of the cubi is $33 / 8$ of the cube of the foot. given that $(11 / 2)^{5}: 1^{3}=$ $33 / 8: 1$, often this relation betiveen the cube of the cubit and the cube of the loot is taken as a relation $31 / 3: 1$ for the sake of oasy reckoning, with the result that there is a discrepancy ol $1 / 80$, since $31 / 3: 33 / 8=80: 81$.
The most striking example of the discrepancy komma $(1 / 80)$ is that next to the quadrantal (cubed Roman foot) of 80 librae thero is a quadrantal of 81 librae. This larger
quadrantal has an edge which constitutes a special Roman foot of 297.1734 millimeters (instead of 295.9454 millimeters) which was called geometric fool in the Middle Ages. The Roman foot of the geometric variety was the scientilic foot ol early modern science. Scientiste began lo calculato by the French piod de roi (which originally wes the undecimal version, $11 / 10$, of the Roman (loot) atter Picard used it in his famous calculation of the clrcumference of the earth, and Newton quoled Picard's figures in presenting the empirical proots for tho theory of gravitation. The pied de roi was used in calculating tho length of the Paris meter, theoretically defined as $1 / 10,000.000$ of the arc of meridian: the meter is $1 / 10.000 .000$ of 30.784 .440 pieds de roi, which was then the assumed length of the arc of meridian from the equator to tho polo.
By dividing the quadrantal of 81 librae into 80 librae, the Romans obtalned a libra of 328.050 grams , which was called the geometric librs in the Middle Ages. The edge of the larger quadrantal, tho Roman geometric loot, was the standard unit in the planning of most monuments of classical Athens.

The larger Roman quadrantal (81 regular librae $=80$ librao of the geometric varioty), cubo of a Roman geometric foo 297.1734 millimeters, contains 26,244 cubic cenlimeters or grams. It survived up to recently as the Russian chetverik (this Russian term has the same meaning as the Latin quadrantal) The taw of 1918 that introduced the French metric systom in the Soviet Union fixed the chetverik at 26,239 cubic centimeters.
The reason for the small difference is that Czar Peter the Great. according to his westernizing policy, had the length of the Russian sajer' roadjustod to make it equal to 7 of the feet used in Englend. But the exact standard of the English loot had been lost in the Elizabethan age, and the length of the Engllsh foot has wavered until in England there was eslablished the imperial Yard of 1824, which makcs the foot equal to 304.79974 millimeters, and in the United States the foot was defined by the Paris meter as 304.8 millimeters (act of Congress of 1928). The retorm of Peter the Great caused uncertaintles in the definilion of Russian measures. The action of ono autocrat extended the damage caused by another. As far as I can understand the record, the problem of the length of the English foot arose when Queen Elizaboth. following her policy which aimed at roducing the power of the municipal body of London, downgraded the authority of the standard of Gulld Hall (pes Curiae Londinensis). Which was consldered by scholars the besl standard of English loot. Incidentaliy, Piazzi Smyth suggested that a way to

Search inside
reconstruct the authentic value of the English foot is to compare the actual dimensions of the King's Chamber of the Great Pyramid with the report of the survey conducted by Greaves.

On the other side, I have examined the reports about the dimensions of the Church of St. Sophia in Novgorod, the oldest stone monument of Russia, in order to establish what was the original vaiue of the Russlan counterpart or the English foot. From the point of view of my Investigations, It s lucky that an effort has been made to restore this church lucky is as before it was destroyed by the German army in World War II.
5. Once i was able to establlsh the relationship between The Roman toot and the Egyptian foot the former being the trimmod vorsion of the lattor) and succoodod in clarilying the history of the units called Roman by distinguishing two varietles of llbra related as $80: 81$. I came to the conclusion hat the root of the anclent system of measures is not the Egyptian foot of 300 millimeters, but another unlt which is he geogrephic foot of 307.7957 millimeters.

If we take $9 / 8$ of a Roman quadrantal of 60 regular ilbrae or $10 / 9$ of a Roman quadrantal of 81 such llbrae, we have a unit of $\subseteq 0$ librae, which metrologists call the artaba. Artaba is the Porsian name of this unit. Motrologists employ it bocauso after this unit was adopted as the officiel standard by the
 in the anclent ivorld: we tind it in Greek. Latin. Mebrew. Syriac, and Arabic texis. But the unit itself is as old as any Syriac, and Arabic texis. But the unit
The artaba has the following contents:

> 29,160 cuble renilmeters or grams
> 90 Romen Ibrae
> 080 Roman cunces ol 27 cubic ce
> 3200 Egyptian qedel of 9.1125 siams
> 3240 Egypllon qedet of 9 grams
450.000 Engush grains

The artaba was a unil of paramount Importanca in Egyot and several other areas of the anctent world. because it was the standard ration of wheat for a month. This was the ration ior an adull tree male; vomen, slsves, and chlldren wore assigned fractions of it. The artaba was also the slandard monthiy ration of rice In China.
In cuneiform mathematical and economic texts the mosi ommon unit of volume is a pint (sila in Sumerian, gà In Akkadian) of 486 cubic centimeters, which is $\$ / 60$ artaba. The pint of cuneiform texts is divided into 80 sheqels of 3.10 grams ($9 / 10$ of an Egypllan qedel).

The paramount importance of the artaba continued up to
modern times, i have established that the key to the metric systems of medieval Europe is an ounce of 29.160 grams, which is $1 / 1000$ of an altaba of water. This ounce wes made important in Europe by the monetary reforms enacted by the Frankish Kings Pepin and Charlemagne. The arlablc ounce was known in Europe as the Cologne ounce, because Cologne was the seat of one of the important mints of the Carolingian Empire. in England the artabic ounce was called ounce Towet, after the mint of the Tower of London.
in England the ounce Tower remained stable at 450 English grairs (29.160 grams) or $16 / 15$ of ounce Troy. Tho ounce Tower is no longer used today because it was used only to welgh coins. On the European continent the Cologne ounce remained less stable, because often it was computed as 451 gralns (to my knowledge this figure is first mentioned in a document A.D. 1275). The reason tor this shift was an effort to adjust the Cologne ounce to a shift in the Paris llvie. The Paris liure was divided into 9216 gralns (18 ounces of 24 scruples of 24 grains) For lechnical reasors of monetary economics, the Paris ounce had to be 22;21 of an artabic ounce. Hence, in the early Middle Ages the Paris ounce was 30.54857 grams and the Parls Ilvre 488.77714 grams, whth a grain of 0.0530357 gram. Since there were 6109.1 of these grains in the Roman IIbra of 324 grams, in the leter part of the Middle Ages, in order to relate easily the Paris unils to a well-established standard, the Paris grain was recalculated as $1 / 6100$ of a Roman Ilbra and the Paris ounce and livere were increased accordingly (livre of 489.50557 grams). The Paris grain (0.05311475 gram) came o be 50/61 os ihe English grain. This small and apparently reasonable readjustment of the Paris units was enough io create a spreading wave of uncertainty in the value of create a spreading wave of uncertainty in the value of centuries. For instance, one can trace its consequences in metric and economic documents of the Low Countries, Scandinavia, and Russia.

Because of the increase in the Paris units, the Cologne ounco camo to be often calculatod as 451 English grains instead of 450. At the beginning of the nineteenth contury, when the German slates were taking steps toward national unity, it was thought expedient to try to unity the German coinage in terms of the Cologne ounce. A survey conducted in 1829 established that in Cologne Itself the Cologne mark (8 ounces) was 233.8123 grams; 8 artablc ounces would be 233.280 grams and 8 ounces of 451 English grains would be 233.79840 grams. The standards of other German cities were lound to be sllghtly dillerent from Ihat of Cologne, reaching a minimum with the mark of the mint of Bonn, which was

Search inside
233.612 orams. On July 30. 1838, the German states signed convention to establish a uniform monelary mark defined in terms of the French motric units as 233.855 grams; but the mine administratlon of Sexony continued to consider as herrect the mark of Dresden, which had been set at 233.580 rams in an assembly for the resting of monetary weighis (IAünzprobationsembly for the testing of monetary welgis he assembly of Regensburg had followed the pattern of the medieval Assizes of Weights and Measures, who when called o resolve discrepancles belween dilierent standards of the same measure usually settled the matter by selecting an intermediary value. I may finally mention that when the French metric system was adopted in Spain, it was decreed that the pound of Aragon, composed of 12 ounces, would bo herelorth considered equal to 350 grams: 12 artablc ounces is 348.720 grams.
6. The edge of the cube containing an artaba is a toot of 307.7957 millimeters (cubit of 161.6935 millimeters), which I call geographic foot, because it was the unit mosi commonly used in geographic measurements in all areas of the ancient world, Egypt being excepted for reasons that I will explain.

The multiple of the geographic foot is the stadium of 000 feel (400 cubits). The sladlum is $1 / 600$ degree, so that here are 360.000 geographic feet in a degree. It was assumed that a sladium (184.677 meters) corresponds to a double minute of march, implying that e man makee a step of 5 feet In a second. It was assumed that a man marching or shio under oars covers 30 stadla (5540.3 meters) in an shr since it was assumed that a man can march or row for 0 hours a day 300 stadia was considered the distance normally covered in a day. There are a great number of texts from Egypt and other areas of the ancient world which have not been understood, because they speak of 1,2.3.4. days of march, when they mean a geographic distance of $30^{\prime}, 1^{\circ}, 1^{\circ} 30^{\circ}, 2^{\circ}$. . . . It was assumod that the speed of a ship under sail is $5 / 4$ of that of a ship propelled by oars, so that a ship under sail covers 37.5 stadia in an hour and 900 stadla (1 1/2 degrees) in 24 hours.
in the ancient worid the degree of latituda was usually eckoned as 360,000 fect (600 stadia). Sailors and travolors of the eastern Mediterranean and of the Middle Eest reckoned the degree of longltude as muphly 500 stadia, or 300,000 geographic feet (92.339 meters); this calculation Is correct between parallels 34° and 35°

The catculations of the degree of lattiude as 360,000 geographic leel $(240,000$ geographic cubits) proves to be of Egyptian origin, since a degree of $110,806.5$ metors
proves to be correct at parallel $27^{\circ} 45^{\prime}$ north. which is the middie latitude of Egypt according to the predynastic geodetic system, which counted $7^{\circ} 30^{\prime}$ from Behdel to the southom limit of Egypt, latitude $24^{\circ} 00^{\prime}$ north. According to the Smithsonian Geographical Tables, a degree at parallel $27^{\circ} 45^{\circ}$ is 110.803 .0 meters.

The Egyptians preferred to reckon by cubits (stadtum of 400 cubits and degree ol 240,000 cubits), because is is expedient to divide the circumference of the earth not only into 360 degrees bu! also into 24 hours. According to the second system a degree is equal 104 minutes of time and a minute of degree is equal to 4 seconds of time. I shatil deal with this matter more oxtonsively lator.

Two great scholars of this century who have dedicated their lives to the study of anclent measures conctuded that these are so strictly defined and so rigorously organized that they must have a basis on some absolute natural standard. Since it is obvious from the reading of ancient exts that the ancients had a deep concern vith cosmic ilme, with the movement of the vauli of heaven, these two scholars concluded that the system of measures must have coordinated not only length, volume, and weight, but also time.

The first of these two scholars. Sir Filinders Petrle, whose major concern was Egyotian measures, thought that the starting point of ancient measures was the length of the pendulum. He advanced the theory that the Egyptians began with a pendulum that swings 100.000 times a day at the latitude of Memphis ($29^{\circ} 51^{\prime}$ north) Having established that his pendulum has a length of 740.57 millimeters, they would have taken as standard of length the side of a square the diagonal of which is the length of the pendulum. This would be the origin of the Egyplian royal cubit. Calculailing by this procedure, the royal cublt would de 523.66 miltimeters, but Petrie estimates it as about 524 millimeters.

Carl Friedrich Lehmann-Haupt, a scholar of ancient history who, after the death of Hultsch, took over the rote of the great German speclalist of anclent measures, making them ils major concem up to his death in 1936, followed the same line of reasoning. Since he started his activities as one of the decipherers of the Sumerian language and was particulatly compelent in the reading of cuneiform mathematical texis, he argued that the ancient system of measures was organized in Mesopotamia from the pendulum that beats the second at lattude 30°. The early inhabltants of Mesopotamia would have taken the haff of this length as their cubit (cubit of 491.16 miltimeters according to Lehmann-Haupt).

Search inside

The idea was nol complately neve; in the period of the adoption of tho Fronch metric systom, thero occurrod to a adoption of tho Fronch motric system, thero occurrod to a
scholar of ancient measures that the Roman foot might have been calculaled as the length of the pendulum that beats the hali-second.

Untortunately, Petrie and Lehmann-Haupl were not so well informod about tho history of moasuros as thoy should havo been. Soon after Galileo discovered the law of isochronism of the pendulum, since scholars were debating among themselves the project for a new decimal system of measures, it was suggesled by several of them that the new system should be basod on the length of the pendulum, in order to link together time, length, volume, and weight. But in the course of the elghteenth century, it was realized that the course of the elghteenth century it was reatized that ine Fendulum does net provide a reliabie standard of tengin. First of all, it was established that the period of osciltation of
the pendulum changes according to the fatitude; this lad the pendulum changes according to the tatitude; this lad
to the discovery of the polar flattening of the earth. It was to the discovery of the polar flattening of the earth. It was
also successively established that the perlod of oscillation is also successively established that the period of osclliation is
influenced by the density of the earth and by any presence influenced by the density of the earth and by any presence of large masses of matter, since the period depends on the gravilational pull. Hence, by the time of the adoption of the French metric system. It had been decided that the new decimal system should limil itself to coordinating length, volume, and weight.

When the Constltution of the United States was draftod, there was included a special clause to prepare the ground for the adoption of a new decimal system of measures, wilch was advocated by all enlightened people. When the French Revolution in one of its first steps put into law the French Revolution in one of its first steps put into law the decimal metric system, the Congress of the United States
considered adopting the French system, But Thomas considered adopting the French system, But Thomas
Jelferson, whom Congress respected as the euthority on Jeflerson, whom Congress respected as the euthority on
such matters, opposed the plan on the ground that the such matters, opposed the plan on the ground that the French system was inadequate, since it did not coordinate time with length, volume, and weight. This opposition from inside the camp of the progressive forces doomed the adoption of the decimal system in the United States.

Jefferson was correct in principle, and so were Petrie and Lehmann-Haupt. A truly desirable system of moasures should coordinate time, length, volume, and weight, but what these people did not know is that the anclents had lound an easy and reliable method to coordinate length with time. All that is needed is to relate the unit of length to the speed of the rotation of the vault of heaven, since this is the speed of the rotation of the vault of heaven, since this is the wo calculate time by the length of the mean solar day, bu: since this is a highly artificial concept, astronomers set the
length of the solar day by the apparent motion of the vault of heaven (sidereal time), which flows evenly.

Tho problem of coordinating time with the other measures is so important that after decades of research on ancient measures I was stlli fumbling for one element which would allow me to fil all my findings together, until Peler Tompkins ripped the veil from my eyes by pointing oul to me that speed of rotation of the vault of heaven is $\mathbf{1 0 0 0}$ geographic cubits a second.

The Egyptians set their standards of length in a manner that permits an easy correlation with time, but still the slandard which was scientifically defined had to be the slandard of length.
7. The tradition of what was the ancient procedure has been preserved by the scientist and mathemalician Girolamo Cardano (1501-1576). Like other Renaissance scholars he was concerned with the establishment of an absolutely inafterable slandard of length. In his book De Subilitite (Chapter XVII. edition of Basel, 1553. p. 475) he discusses the length of the ancient Roman foot and passes from It to the problem of how to base length and weight on a mensure perpetua. He observes that such an absolute standard should be searched for in the heavens, bur, since this is impossible for practicat reasons, he declares that the standard is provided by the pyramids of Egypt, tho Labyrinth of Thebes, cities like Cairo, and the river Nile. The meaning of this statement is perfectly clear. when we consider the geodetic system of Egypt. as I have reconstructed it; but its form is cryptic. This should not be surprising, since It is known that Cerdano has been cryptic in announcing some of his major mathematical discoveries, It had been the practice of scientists and mathematiclans up to the age of Newton to put into print the data which they considered of essential importance in a form such that the meaning would become obvious only after en explanation had been communicated orally, because this was the only method they had of protecting their copyright.

The Egyptians decided that the distance of $7^{\circ} 30^{\prime}$ from Behdet to the southern boundary of Egypt should be reckoned as $1,800.000$ geographic cubits. According to the Smthsonfan Geographical rables the interval from $31^{\circ} 30^{\circ}$ to $24^{\circ} 00^{\prime}$ is 831.091 meters. According to my findings $1,800,000$ geographic cubits are 831,048 meters. The figures of the Smithsonian GeograDhical Tables are an estimate of the average length of the degree of lattude, based on the assumption that the earth is a regular geometric body. It would be necessary to consider what is the actual length of the degree in Egypt. Up to now I have deliberately

Search inside
avoided obtalning this inlormation, bocauso I did not want my interpretation of the texts to be influenced by the knowiedge of the possible results.
in order to appreciate the nicety of the Egyptian figure, we must keep in mind that in the IIrst French legislation the length of the meter was establishod by assuming that the arc of meridian is $30,794,580$ pieds do rol, on tho basls of the survey conducted in 1740. Later the length of the meter was revised to the presenl one, because according to the surver conducted in 1792-98 Ihe arc of meridian is $30,784,440$ pieds de roi. After this survey the moter was no longor revised, alihough it has been ascertained that the arc of meridion Is about 2000 meters more than $10,000,000$ meters.

8 From the geographic cubit. defines as $1 / 1,800.000$ of the length of Egypt, there was derived the geographlc foot of 307.7957 millimoters. By cubing this thoro was fixed the volume of the aitaba as 29,160 cubic centimeters.

The attaba was divided into 54 pints of 455.6250 cubic centimeters, that is, into 64 cubes with a side of a hand (4 fingers $=1 / 4$ loot). This unil is the standard pint of Egypt. The pint was divided into 50 qedet of 9.1125 grams, employed to weigh gold and sllver used as a means of exchange. Sutzu is correct in concluding that. although the qedet of 9 grams is the more current unit of weight in advanced civilizations, the heavior qedet appears common in prehistoric or early times,

From the artaba there was derived a unit of 3 artabas, which is the cube of the Roman cublt. This Is the origin of the Roman foot. There was also derived a unit which is the brutto vorsion of the preceding one; since in the cube of the Romen cubit there are 9600 qedet, this second unit contains 10.000 gedet of 9.1125 grams. The edge of the cube which corresponds to this second unlt is Ine ordinary Egypitan cubit of 450 miltimeters. This cubil implies a foot of 300 millimeters. The cube of this foot is the talent of 27,000 cubic centimeters or grams, which was divided Into 3000 qedet of 9 grams of 1000 Roman ounces of 27 cubic centimeters or grams. The netto version of this unlt is the cube of the Roman foot (25,920 cubic centimeters or grams). Since the cube of the Roman foot is $8 / 9$ ertaba, this cube was divided into 80 llbrae of 36 qedet of 9 grams. whereas the artaba is composed of 90 tibrae. Three qedet of 9 grams makes the Roman ounce of which 1000 makes the cube of the Egyptian foot of 300 millimeters (27,000 cubic centimeters or grams). However, tollowing the reckoning of a qedet ot 91125 grams there continued to be in common use a larger quadrantal (Russian chetverik), the edge of which is the Roman geometric foot, and which contains 80 geometrlc tibrae
($81 / 80$ of regular libra of 324 grams). This larger quadrantal is $9 / 10$ of artabo.

The organization of the units according to this pattern had a practical purpose. The unit of 3 arlabas was the cube of the cubil (AA3.9181 millimeter) catled Roman, a unit of 87,170 cubic centimeters or grams. This was considered a unit netto, to which there corresponded a unit brutto $\{25 / 24$ of 91.125 cubic centimeters or grams, which is the cube of the common Egyptian cubit of 450 millimeters. The units of 87,470 grams and of 91.125 grams, that is, tho woight of the cubes of the Roman and of the common Egyptian cubits fillied with water, are called by me basic load nello and basic load britto. I have given them these names because they were considered the standard amount that could be carried by a pack ass. In Akkadian thoso units are called imëru, which means "ass." The Masoretic text of the Old Testament uses a dilferent punctuation of vowels under the consonants to distinguish between the term ntmr as retering 10 an ass and the same term as referring to the unit of measure, but there are puns in the OId Testament which indicate that one could confuse one meaning with the othe. Since the language of measures is very internationat, there is a transfer of terms among Semitic, Indo-European, and Fenno-Ugrian languages, in which the same terms are applied at times to the measure and at times to the animal. Some easy examples are the following. In Hellenistic Egypt the ass was called gomarlon, from gomos, "load"; the ass is catled gomari in modern Greek. In Italian the ass is called somaro, from the Greek sagma, "pack saddie." The corresponding English word is sumpter, which corresponds to a Gelman Saumitier, a term in turn corresponding to the lhalian bestia da soma. "pack animal." in German Saum means "burden" and also relers to a large unit of meacure. In lialian salma is both a large unit of weight or volume and a corpse carried on a stretcher. which has on the average the welght of what I call a basic load.

The cube of the foot was called talont in Greek or by cquivalent terms in other languages of the ancient wortd. There was a basic talent netto of 25.920 grams and basic talent brutto of 27,000 grams, which were respectively the cube of tho Roman foot of 295.9454 millimeters and the cube of the Egyptian foot of 300 millimeters. Names such as talent refer to the fact mat these weights were considered half of the amount that could be transported by a man. It was assumed that a man transports burdens by suspending them at the iwo ends of a cariying yoke. At each end of the yoke there were weights, which ideally had to be identical; each of these weights was called a talent. It is evident that

Search inside
this is the origin of the idea of equilibrium and of the measuring scale. Incidentally, I may also mention that it was assumed that the carrying yoke has a length of 2 cubits or three feet.
9. SInce the development of units from the artaba had started with the cube of the Roman cubit, which is equal to 3 arlabas, thero was developed a unit equal to 5 srlabas. The edge of the cube containing 5 artabas is the origin of the Egyptlan royal cubil. Five artabas viere the volume of a basic load of barley (barley was assumed to have a specific gravli'y between 0.6 and 0.666).

The edge of the cube which contains 5 artabas was interpreted as the septenary version of the Egyptian cubit of 450 millimeters, that is. as a cubit of 7 hands (28 fingers) instead of the normal 6 hands (28 fingers). But, it we reckon exactly, the cube of the cubit of 525 millimeters contains $141,703.125$ cubic centimoters, which is somelhing loss than 5 artabas $=145,800$ cubic centimeters. A unit of 5 artabas should contaln 16,000 gedel. By dividing the cube with an edge of 525 milisimeters by 16,000 there is obtalned a qede of 9.043945 grams, which is intormediary between the qedel of 9 grams and the qedet of 9.1125 grams. The analysis of the distilbution of the weights of Egyptian sample weights indicates that there were in use three standards of qedet:

9.000000 grams 9.043945 grams
 9.112500 grams

Correspondingly. The study of the monuments and of the measuring roos indlcates that there were three values of the royal cubit:

524.1483 millimeters 525.0000 mililmeters
 525.000 minimeles 526.3231 miltimetera

The first royal cubit is the edge of the cube containing 16,000 aedet of 9 grams. It is the standard of the Great Pyramid and of the immense complex of bulldings erected by the architect Imhotep around the pyramld of King Zoser of tho Third Dynasty. This royal cubit was the scientific unit of Egypt, employed in the calculation of geographic distances.

The second royal cubit was exactly $7 / 6$ of the Egyptian cubit of 450 millimeters. It was the one most commonly used in ordinary ifie. It is the standard of the Second Pyranid of Giza.

The third royal oubit had the virtue of being the odgo of the cube containing exacily 5 artabas $(16,000$ qedel of 9,1125
grams). It is the standard of the coffers of the mentloned two pyramids of Giza

The royal cubit had the advantage of being a soptenary unit, a type of unit which had been found convenient in the practical solution of problems involving irrational roots such as $\sqrt{2}$. $\sqrt{3}$, and π. But. when the reorganization of the Egyptian geocetic system with the unification of Egypt Egyptian geocetic system with line unificarion of Egypt
stressed the number 7 as the link between the dimensions of stressed the number 7 as the link between the dimensions
Egypt and the order of the heavens, the septenary royal Egypt and the order of the heavens, the septenary royal
cubit was raised to the status of a national symbol and cubit was ralsed to the status of a national symbol and
it may be worth pointing out, in order to indicate how the great majority of scholars deat with these problems, thai Eduard Meyer, whose ideas and method dominale contemporary history of antiquity and of Egypt in particuiar, explained the origin of the royal cubit by asserting that the Pharaohs demanded contractors to bulld by the cubit of 7 hands, but exercised their royal prerogatives by paying them as it they had employed the regular cublt of 6 hands (a discount of 37 percent). Let us not forget that the current opinions about the Egyptian ability to measure lime estronomically are based on the calculations of Eduard Meyer.
10. According to the second geodetic system of Egypt, the length of Egypt, from the base line of tho Delta ($31^{\circ} 06^{\prime}$ nerth) to the usual southern boundary ot $24^{\circ} 00^{\prime}$ north, was recalculated as $1,500.000$ royal cubils of 524.1483 millimeters. Thls is the reason why the cubit of 524.1483 millimeters became the one used in geographic measurements.

This second calculation of the length of Egypt ie derivative and, hence, is not as precise es the one that made the geographic cubit equal to $1 / 1.800 .000$ of the length of Egypt. The length of Egypt according to the dynastic system is $7^{\circ} 06$ '; $1,500,000$ royal cubits equals 786,222 meters. According to the Smithsonian Geographical Tables, the interval from $31^{\circ} 06^{\prime}$ to $24^{\circ} 00^{\circ}$ is 786.741 meters. There Is a dilterence of about 1000 royal cublis.

For the sake of geographical catculations the royal cubit was given as multipie the stur of 15,000 royal cubits, so as to make Egypt equal to the perfect figure of 100 afur. The term olur literally mean "river"; ll could be translated as "river measure." If was understood that an atur (7862.2 meters) corresponds to an hour of navigation along the Nile.

The atur fitted the septenary spirit of the system of measures, since it could be assumed that a degree of lattude is 14 arur. This was a practical approximation, which was corrected by adding docimal points to the figure of 14 etur, reaching a maximum of 14.1 atur at the north of Egypl.

Search inside

A degree of 14.1 atur is $110,857.4$ meters. According to A degree of 14.1 aiur is $110,857.4$ meters. According to
the Smithsonian Geographical rables, degrec $30^{\circ}-31^{\circ}$ is $110,857.0$ melers.

The length of Egypt was divided into 14 atur for Northern Egypl and 86 atur for Southern Egypt. If we divide 100 atur by $7^{\circ} 06^{\prime}$, we have a dogree of 14084507 atur $=110,735.6$ melers, which is the tength of the degree at paraltel $23^{\circ} 00^{\prime}$ (110,736 meters according to Helmert). A reason why the length of Egypt was extended south to the Sacred Sycamore. al $23^{\circ} 00^{\circ}$ north, appears to have been that of giving a more oxact scientific basis to the calculation of the royal cubil as being such that $211,267.605$ royal cubits (14.0845 atur) makes a degree.

We shall see that the Pharaoh Akhenaten attacked the authority of the Temple of Amon at Thebes by questioning the scientific exactitude of tho sccond geodotic systom of Egypt and of the calculations by royal cubits, There is a Egypt and of the calculations by royal cubits, There is a lallude $24^{\circ} 00^{\circ}$ to latitude $23^{\circ} 00^{\circ}$ north was part of the lalliude $24^{\circ} 00^{\prime}$ to latitude $23^{\circ} 00^{\prime}$ noth was part of the
counterattack against the reforms of Akhenaten. The purpose may have been that of calculating the value of the royal cublt Independently of the value of the geographic cubit.
III. COFFER OF THE GREAT PYRAMID

1. On tho basis of my reconstruction of the Egyptian system of measures, 11 is possible to solve the riddle of the cofler placed inside the King's Chamber of the Great Pyramid.

Many investigators have tried to explain the dimensions of this colfor, but none has reached a positive conclusion. However, the majorily of the Investigalors agree on two basic assumptions: the coffer embodies some numerical conundrum and the contents of the cotter corresponds to some standard of volume. According to my interpretation both of these assumptions are correcl: the contents of the both of these assumptions are correct: Ine contents of the cofler is 8 cubic royal cubils $=40$ artabas $(1166.40$ liters), and the walls were given a thickness such that the outside volume of the cotter is wice inal of the contents, that is.
cubic royal cubils = 80 artabas (2332.800 liters).

The Investigators who have preceded me have been hampered by not knowing that there were three possible values of the royal cubit. For this reason they could nol realize that the standard ot measure of the cofler is a royal cubit difforent from that omployed in planning the King's chamber and the rest of the Pyramid. The King's Chamber was planned by the royal cubit of 524.1483 millimelers. because this is the standard of the Pyramid. ctiosen because
this was the royal cubil usually employed by the Egyptians In calculaling geograchic distances. The coffer on the other hand, was planned by the royal cubit of 526.3231 millimeters, beoause this was the unit employed in calculating the fundamental units of volume and weight.

Belore the Cole survey of the dimensions of the Great Pyramid, the only datum available to scholars to determine the exact value of the cubil of tho Pyramid was the dimensions of the King's Chamber. It was Newlon who, on dimensions of the King's Chamber. It was Newton who, on
the basis of the survey conducted by Greaves, realized that the basis of the survey conducted by Greaves. realized
the King's Chamber measures 10 by 20 cublis Having the King's Chamber measures 10 by 20 cublts Having
eslablished this fact, he calculated that the cubit of the established inis fact, he calculated that the cubit of the
Pyramid is $1732.5 / 1000$ ol an English fool and rounded the Pyramid is 1732.5/1000 ol an English fool and rounded th
figure to $1732 / 1000$. Calculating by the British Imperial figure 10 1732/1000. Calculating by the British Imperial
standard rool established in 1824 , the llgures of Nevion standard fool established in 1824, the ligures of Neivion
Indicate a cubit of 528.0655 or 527.9131 millimeters. Nehton Indicate a cubt of 528.0655 or 527.9131 mimimeters. Newit because he wanted to interprel the slatement ol Eralosthenes that a degree of latitude is 210.000 cubils.

Perrie proceeded to an extremely accurate survey of the dimensions of the King's Chamber, taking into account the fact that the blocks havo been spread apart by the action of earthquakes. By deducting from the length of the sides the spaces which loday separate the blocks, he concluded that the cubil of the King's Chamber is 20.632 ± 0.004 English inches $=524.0523 \pm 0.1016$ millimeters. This empirical dalum agrees wilh the figure of 524.1483 millimeters which I have obtained by considering the mathematlcal structure of the Egyptlan syslem of measures and all the empirical evidence available

The coffer is not calculated by the cubit of the King's Chamber, bul the cubit of 520.3231 millimeters, because this cubll when cubed contalns 145.800 iters $=5$ anabas $=$ 16,000 q9det o! 9.1125 grams.

The reports about the dimensions of the coffor show some discrepancies, because the coffer was cut rather roughly. Petrie relates that an entire side was cut by the strokes ol a huge saw, which at times was backed up atter it had dented the stone as much as one inch out of plumb. However, by comparing the reports of Greaves, Piazzi Smyth However, by comparing inc reporis of Greaves, Piazzi Smyth, of the coffer, since I have the advantage of knowing the exact value of the unit of measurement.

The colfer was computed in hands of $1 / 7$ of the cubil of 526.3231 millimeters. Its inner dimensions are:

Search inside

The corresponding figures in the reports of Greaves and Petrie are:
26.616 English inches $=676.15 \mathrm{~mm} \quad 26.81$ inchos $=68097 \mathrm{~mm}$ $\begin{array}{ll}77.850 & \text { English Inches }=1.977754 \mathrm{~mm} \\ 36.32 \text { English inches }=871.73 \mathrm{~mm} & 78.06 \text { inches }=1982.72 \mathrm{~mm} \\ 34.42 \text { inches }=87427 \mathrm{~mm}\end{array}$

The report of Smyth agrees subsfanlially with that of Greaves. Petrie's figures are slightly excessive, because he computed the inner dimensions by deducting the thickness of the walls from the outer dimensions. and he thought that it would be proper to measure the walls at the point of their minimum thickness.

The lateral walls were intended to be 2 hands thick, so that the outside dimentions are:

Width: 13 hands $=977.46 \mathrm{~mm}$
 Length: 30.3 hands -2278.23 mm

Petrie's figures for these two dimensions are:
38.50 Englistitnches $=977.90 \mathrm{~mm}$
89.62 English inches $=2276.35 \mathrm{~mm}$

The height of the outside was intended to be 2 cubits $=$ 14 hands, but in order to esteblish a link botween the colfor and the rest of the Pyramid these two cubils were calculaled by the cubit of the Pyramid and the King's Chamber. Two cubits of 524.1483 millimeters is $1,048.29$ millimeters in torms of the cubit of 526.3231 millimeters, this means 13.9422 hands; possibly the figure was rounded to 13.9333 hands $=$ 1.047 .63 millimeters. I assume thal the boitom of the cofler was given a thickness of 2.333 hands $=175.44$ millimeters (Petrie reports 6.89 inches $=175.01$ millimeters). I assume that the height was 13.5333 hands $=1,047.63$ millimeters (Petrie reports 41.31 inches $=1049.27$ millimeters).

According to Greaves's ligures the contents of the cofter is 71,118 cubic inches $=\mathbf{1}, 165.428$ liters. According to Petrie's figures the contents is 72,033 cubic inches $=$ 1,180.405 liters; I have explained why Petric overestimated the inner dimensions. According to my interpretation the the inner dimensions. According to my interpretation the
contents is 274572 cubic hands. Now. 2744 cubic hands is Contems is 274572 cubic hands. Now. 2744 cu
1,166400 liters $=8$ cubic cubits $=40$ artabas.

If the outside of the colfer is 13 by 30.3 by 13.933 hands, its volume is 5488.3 cubic hands. Now, 5488 cubic hands is 16 cubic cublts $=80$ artabas.

Since the two volumes of the cotter are 8 and 16 cuble cubits, it is not possible to be certain that a measurement by artabas was in the mind of the builders, atthough 1 cannot think of any other reason why the builders should have chosen the cubit ol 526.3231 millimeters, unless they Intended to choose the cublt which when cubed has a contents of exaclly 5 artabas, A clearer proof that the
calculation was intended to be by artabas is provided by the similar coffer of the Second Pyramid of Giza.
2. Fiom the dimension of the sides of the Second Pyramid ol Giza, it can be established that it was planned by the royal cubit of 525 millimoters. Nevortheless, as in tho case of the Great Pyramid, the coffer was planned by the cubit of 520.3231 millimeters.

Petrie tepors the following data about the cotter of the Second Pyramid. expressed in English inches:
Oul- Longth Wiath Hoight
$\begin{aligned} & \text { Out- } \\ & \text { sido: } 108.68=2,709.67 \mathrm{~mm} 41.97=1.066 .04 \mathrm{~mm} \quad 38.12=988.25 \mathrm{~mm} \\ & \text { Walls: }\end{aligned}$ $\begin{aligned} \text { side: } 108.68 & =2,709.67 \mathrm{~mm} 41.97=1.066 .04 \mathrm{mnI} 38.12=968.25 \mathrm{~mm} \\ \text { Walls } 21.95 & =557.53 \mathrm{~mm} \quad 1528=388.1 \mathrm{~mm} \quad 8.53=276.66 \mathrm{~mm}\end{aligned}$ Wais: $21.95=55.53 \mathrm{~mm} \quad 15.28=388.11 \mathrm{~mm} \quad 8.63=216.66 \mathrm{mmm}$
Inside: $84.73=2.152 .14 \mathrm{~mm} \quad 26.69=67.93 \mathrm{~mm} \quad 29.59=751.59 \mathrm{~mm}$

As in the Great Pyramid, the colter was planned in hands (1/7) of the cubit of 526.3231 millimeters. The dimensions are the following:

Outside: $36=\begin{gathered}\text { Longth } \\ =2.706 .80 \mathrm{~mm} \\ 1+2=1.067 .68 \mathrm{~mm} \\ \text { Width } \\ 12.88=969.43\end{gathered}$ Outside: $36=2.706 .80 \mathrm{~mm} \quad 1+2=1.067 .68 \mathrm{~mm} \quad 12.88=968.43 \mathrm{~mm}$ Walls. $7.4=506.40 \mathrm{~mm} \quad 5.2=390.98 \mathrm{~mm} \quad 2.88=216.56 \mathrm{~mm}$
Inside. $28.6=2,750.41 \mathrm{~mm} \quad 9=676.70 \mathrm{~mm} \quad 10 \quad=751.89 \mathrm{~mm}$ According to my intorprotation the volume is 2574 cubic hands $=1094.137$ liters. II we assume thal the volume vias intended to be 2572.5 cublc hands $=1093.500$ liters. the contents of the coffer corresponds to:
7.5 cubic royal cubits
37.5 artabas
12 basic load

12 basic loends brutto
120.000 qedet of 91125 grams

121,500 qedel or 9 grams
The contents of this coffer is $15 / 16$ of the contents of the coffer of the Great Pyramid.

Because the Second Pyramid had been planned by the royal cubit of 525 millimeters, the coffer, although measured by the cubit of $\mathbf{5} 26.3231$ millimoters, indicates a volume expressed best of all in basic loads brutto; the basic load brulto is the cube of the cubit of 450 millimeters. which is the common cubit coresponding to the royal cubit of 525 millimeters.

Potrio's figures imply an oulisidc volume of 2796.893 liters. According to my interpretation the volume is 6584.25 cubic hands $=2798.786$ Ithers. If we assume that the ourside volume was intended to be 6585.4 cubic hands $=2799.360$ liters, the volume corresponds to:

192 cubic royal cubite
96 atlabas
307,200 basic loads nerio
307.200 qudel of 0.1125 gram

Search inside

The outside volume of this coffer is $6 / 5$ that of the coffer of the Great Pyramid

The coffer of the Second Pyramid was planned so as to embody the key units of the Egyptian system of volumes:

Artaba of 29,160 cubic centimoters (eube of the gaographio foot) Basichi)
Bosic load brutlo of 01,125 cubic centimetors leube of the Egyp lian common cubit)
iv. degrees of latitude

1. The calculation of the dimensions of Egypl by royal cubils was less preclse than that by geographic cubits, but cubils was less precise than that by geographic cubits, but
it had tho advantago of strossing the number 7 as the key to the dimensions of Egypt and as the link betwicen the structure ol Egypt and the order of the cosmos.

Following the sepienary system of measurement, the stadium, a tenth of minute of degree, was reckoned as 350 royal cubits (183.45 meters). This stadium is somewhat shorter than the stadium of 400 geographic cubits $(600$ geograpllc feet $=184.68$ meters). 1 I Implies a degree (600 stadia to the degree) of 210,000 royal cubits $=110,071.1$ motors. But the calculation of the stadium as 350 royal cubits was considered a first approximation which could be employed in pracifcal computations. Just as in the calculaemployed in pracifcal computainons. Just as in the calcula lion by atur, a degree of latitude was considered basically equal to 14 atur, but in exact catculations a decimal point was added to the figure of 14, so in exact calculations a lew cubits were added to the figure of 350 royal cubits to a stadum.

In round figuring the Egyptians catculated the stadium at the equator as 354 stadia; but more accurate figures were known. By this round figure they obtained an equatorial minute of degree (10 stadia) of 1855.485 meters. which is 88 millimeters more than the figure of the Internallonal Spheroid (1855.398 meters). A stadium of 354 cubits implies an equatorial circle of $76,464,000$ cubits $=40,078,491$ meters wheress according to the Intemational Spheroid the equatorial radius is $6,378,388$ meters ± 18 meters. so that the equator would be 40076.594 meters ± 113 meters. Since the Egyptians prelerred to count by 90 degrees of Since the Egyptians prelerred to count by 90 degrees of
equator, the figure of 354 cubit for a stadium of equator equator, the figure of 354 cubit for a stadium of equator
contains a numerical game, such as frequently occurs in contains a numerical game, such as frequently occurs in
anclent computations for mnemonic reasons. Ninety degrees anctent computations for mnemonic rea
of equator is 54,000 stadia of 354 cubits.

Assuming a stadium of 354 royal cubits, a degree of equator is 212,400 cubills. which is a good round flgure. We
shall see thet the Egyptians estimated the exact figure as belween 212.380 and 212,392 cubils.

An absolutety exact calculation of the length of the equator was a malter of scientific interest, wheleas the Egyptians put much greater stress on the exact calculation of the length of the degrees of fatitudc, since the anchor of their geodetic conceptions was the course of the Nile.

For the stadium of latitude of the equator they used the figure of 351.6 cubits $=184.2905$ meters, which is as exact as any modern calculation can be. According to the Clarke Spheroid a minute of latitude at the equator is 1842.787 meters: according to the Internallonal Spheroid it is 1842.925 meters. We shall see that the base of the Great Pyramid is calculated by a stadium of 351.6 cubits.

To those who may not be conversant with lhese matters, must explain that. since the shape of the earth is isregular, modem scholars have tried to construct a regular geometric figure, called the spheroid, the dimensions of which fit as closely as possible the actual dimensions of the earth. Different scholars have constructed different spheroids, in part Decause they have based thelr work on surveys conducted in different areas of our planet. For instance, in the United Statcs many agencies and institutions continue to use the spheroid calculated by the English geodesist Clarke In 1868 , because Its data Ift rather well with the shape of the earth in North America Many scholars prefer the computation published by the German Hoimert in 1907. But the calculation most usualiy considered authoritative by scholars is that completed by the American Haylord in 1910. known as the international Spheroid. This calculation is based on a gigantic survey conducted under the auspices of the British Empire from the tip of South Africa to the Equator and then up to the Mediterianean along the Nile. This survey happens to overlap the Egyptian calculations along the course of the Nile.

The stadium of latitude increases as one moves to the north from the cquator, reaching the value of 354 cubits, equal to the length of the stadium of equator, between paraltel 55° and parallel 56°. 11 reaches a maximum estimated as 355 cubits at the pole. This flgure of 355 cubits for the stadium of latitude at the pole, which indicates a minute of 1800.726 meters, was a convenient sound figure which was refined in exact reckonings. A stadlum of 355 cublts implies a polar degree of 213,000 cubits $=111,643.6$ metors; if $1 / 2000$ was the amount added to the latter ligure we would have 213.106,5 cubits $=111.699 .4$ meters. According to the Smithsonian Geographical Tables, degree $88^{\circ}-90^{\circ}$ is 111,699.3 meters.

Search inside

For navigation along the Nile, there was used the following formula tor the lengith of the degrees of latilude:

211,500 cubits $=110.857$ meters al catitude $311^{\circ} 06$

 211,300 cublis $=110,753$ meters at lattude $24^{\circ} 00^{\prime}$211,100 cubits $=110,648$ meters at atitude $16^{\circ} 36^{\prime}$
Latitude $15^{\circ} 36^{\prime}$ north s the latitude of the confliuence of the White Nile with the Blus Nile.
2. One of the major dilficulties of ancient mathematical sclence was that it could not rely on printed tables, atthough some numerical tables, such as exponents roots, and logarithms, are occasionally lound in cunoiform tablets. Even maps were so drawn that the key positions could be memorized. The lack ol the printing press is the reason why In ancient mathematics we find a variety of formutas and mnemonic devices tor obtaining irigonometrlc functions. In the samo spirit tho Egyptians had devolopod a simple formula lor calculating the length of the degree of latitude al all parallels belween the equator and the pole

The scheme was based on the circumstances that the Egyptians used three values tor the length of the degree of latitude at the equator-an exact value based on a stadlum of 351.6 cubits and two rounded values:
A. Exact value Stadium of 351.6 cubits, degree of 210.960 cubits $=110,574$ meters.
B. Value rounded to degree ol 211,000 cubits $=110,595$ meters.
C. Value rounded to arc of meridian of $19,000,000$ cublts degree of $211,111=110.654$ meters.
Valuo B was considered exact for a degree at 9° and value C tor a degree at 16°.

The length of the degree was calculated by taking the second value, 211,000 cubits, and assuming that each degree is longer than the preceding degree by a number of cubits equal to the numbor of the degree.

Degroe	Cublts added to dogroo	Cubits added to longth of degroo at 0°
$1 \cdot$	1	1
$2 *$	2	3
$3{ }^{\circ}$	3	6
$4 \cdot$	4	10
$5{ }^{\circ}$	5	15
6^{*}	6	21

This pattern was foltowed up to degree 36°. which is 36 oubits longer than tho dogree at 35° and 666 cubits longer than the degree at 0°. For six degrecs, from 37 to 42°, the amount added to each degree is 37 cubits. For the following six degrees from 431048°, the amount added to each degree is 38 cubits. Then for six degrees, from 49 to 54°, the amount addod is again 37 cubits. For tho romaining 36
degrees. from 55 to 90°, the amount added is the same as that applied to the first 32 degrees out in the inverse order.

The scheme gives immediately the length of the degrees rom 24 to 58°, that le, tor 35 degrees. For the first 23 degrees and for the last 32 there are introduced simple corrections:
(1) For the first elaht degrees. from 1108^{n}, the amoun s added to the exact value of the degree (value A, 210,960 cubits to degree). From a degree at g° one begins to count by value θ (211,000 cubits), but 45 cubits is deducted from the amount added to this degree; this deduction is reduced by 3 cubits for each of the following 13 degrees, until 3 cubits is deducted from 23°
3. At 90° the amount added according to the scheme is added to a besic degree calouteted by value C (211.111 cubits). For the 32 degrees from 59 to 90°, an adjustment is

Degree	Cubite added to each degree	Cubits added 100° degres	Correction	Egyptan ESTIMATE, metars	Helmerts ESTIMATE, moters
10	1	1		110.575	110.573
2°	2	3		110.576	110,67A
3°	3	6		110.577	110.575
$4{ }^{\circ}$	4	10		110.580	110.577
$5{ }^{\circ}$	5	15		110,682	110.579
8°	6	21		110.585	110582
$7{ }^{\circ}$	7	28		110.589	110.580
$8{ }^{\circ}$	8	36		110.593	110.991
$9 \cdot$	9	45	-45	110.595	110.598
10^{*}	10	55	-42	110.602	110.602
11°	11	66	-39	110.609	110.609
12°	12	78	-36	110.817	110.616
13°	13	91	-33	110.626	110,624
14°	14	105	-30	110.635	110.633
$15{ }^{-}$	15	120	-27	110.640	110.642
16°	16	136	-24	110.654	110.652
17°	17	153	-21	110.664	110.662
18°	18	171	-18	140.675	110.873
19*	19	190	${ }^{16}$	110.687	110.684
20°	20	210	-12	110.699	110.095
25°	21	231	-9	110.712	110.709
22°	22	253	- 6	110,725	110.722
23°	23	276	- 3	110.738	110.736
24°	24	300		110,763	110,750
25°	25	325		110.766	110,784
26^{*}	26	351		110,779	110,779
27°	27	378		119780	110,794
28°	28	406		110.809	110.810
29.	29	435		110,823	110.826
30°	30	465		110,839	110.843
31°	31	496		110.855	110.861
32*	32	528		110,872	110,878
33°	33	561		110.889	110.895
34.	34	595		110,907	110.913
35°	35	630		110,926	110,931
36°	36	666		110.964	110.949

Search inside

Deoree	cublts added deoree	Cubits added degree	Correction	Esyplian estimate. meters	Hemeri's ESTIMATE, meters
$37 \cdot$	37	703		110,964	110,068
3^{38}	37	747		110.983	110.987
39°	37	777		111,003	111.008
10°	37	814		111.022	111,025
$4^{10}{ }^{\circ}$	37	851		11110.041	111.044
42°	37	898		111.061	111,063
43°	38	${ }^{26}$		111.081	111,083
4_{44}	${ }^{38}$	964		111,101	
45°	э9	1002		111,120	111,122
46°	33	1040		111,140	111,142
47^{*}	${ }_{38}$	${ }_{1078}$		1111.160	111.182
48°	33	1118		111,180	111,181
49°	37	1153		111,200	111.201
500	37	1190		111.219	111.220
51°	37	1227		111,239	111.2
62°	37	1264		111.258	111.258
	37	1301		111.217	111,277
54.	37	1338		111,297	111,286
55°	36	1374		111,316	111,3
56°	35	1409		111.334	111.334
55^{5}	34	1443		111,352	111,352
80	31	1599	+ ${ }^{\text {+ }}$	111,408	111, 1105
61°	30	1669	+10.5	111.423	111,422
82^{3}	29	1598	+14	111.440	111,439
${ }^{6}$	${ }_{27}^{28}$	1828	+17.5	111,457	111,4,45
65°	${ }^{27}$	${ }^{1653}$	+21	111,473	111.471
69°		1704		1115	111,502
${ }_{87}{ }^{\circ}$	24	1728	+31.5	${ }_{111,519}$	111,517
68°	${ }^{23}$	1751	+35	111.531	111.551
${ }_{700}$	$2{ }^{21}$	1778	+38.5	1111.547	
71				11.538	111.557
	20	1814	+4.4.5	1111598	111.570
73°	18	${ }_{1851}$	+52.5	111.593	111.582
74°	17	1888	+58	111.804	111,605
${ }^{75}{ }^{\circ}$	16	1884	+59.5	111.616	111,616
76"	15	1899		111.624	111.626
77°	14	1913		111,633	111,635
78°	13	1026	+70	111,642	111,643
79°	12	1839	+73.5	111.650	111.651
80"	11	1949	177	111,657	111,059
818°	10	1959	+80.5	111.668	111,666
82°	9	1968	+84	111.677	1117:6720
83°	8	1976	${ }^{1.87 .5}$	1111.877	1111,677
8^{8}	7	1983	+91	111,682	111.6
85°	8	1989	+94.5	${ }_{1111,887}$	111.668
${ }^{86}$	5	1994	198	111,692	111,680
8°	4	1998	+101.5	111.696	111.6
88°	3	2001	+105	1111.099	1111,695
${ }^{60^{\circ}}$	2	2003	+108.5	111,702	
80"	1	2004	+111.11	111,704	111.697

made for a ransition from value B to value C. Thus. to a degree at 59° there is added $111.11 / 32$ cubits, or practically 3.5 cubits ($32 \times 3.5=112$); to a degiee at 60° iwice as much is added; to a degree at 61° there is added three times as much.

This scheme gives valucs of the degree of latitude which differ most from the one we use today in the area near the pole. This could be connected with the fraction that the Egyptians used in calculating the polar flattening of the earth. I shall doat with this fraction in a following chaptor. According to the scheme, the degree between parallel 89° According to sche.19, the degis beiween paraliel and the pole is 213.115 .11 cubits $=11.703 .9$ meters According to the Clarke Spherold the minute ot degree of
latitude at the pote is such that the corresponding degree is latitude at the pole is such that the corresponding degree is $111,699.36$ meters; but in 1880 Clarke revised the figuro to
$111,702,06$ meters. According to the International Spheroid the figure is 111.700 meters.
4. The scheme which I have presented provides excellent values for the length of the degroe of latitude, but probably was intended to be only a practical device, not the most exact calculatlon. There is evldence which suggests that efforts were made to catculate the lengths of the degrees with greater mathematical refinement.

The Egyptians Invented the column os an architectural element, If one observes the decoration of Egyptian columns with a scientific attitude, he will recoonize that the column sepresents the map of Egypt: the capitat is Northern Egypt and the shatt is Southern Egypt. This explains why among the Greeks, who leamed the use of the column from the Egyptians. for the Doric order, the most conservative of the Greek orders, there was the rule that the shaft should be six units high and the capital one unit high. In the Greek orders the base of the column preserves the arrangement on three horizontal lines, which are the symbol of the tropic of Cancer (parallels $24^{\circ} 06^{\circ}, 24^{\circ} 00^{\circ}$, and $23^{-} 5 r^{\prime}$ notth). The column basically represents the three meridians of Egypt and through its curvature suggosts the extension of the systom of meridians to the east and west of Egypt. But, since the column is circular, the structure of the column was related to the problem of presenting the map of Egypt as part of a cylindrical projection of the surfaco of tho earth from the equator to latitude $31^{\circ} 06^{\prime}$ or latitude $31^{\circ} 30^{\prime}$ north. The elaborate numerical tules for the propontions of Greek columns, which archoologists treat as numeraiogical superstitions, con be explained when one considers the two Interrelated problems of describing mathematically the curvature of the earth and of projecting a curved surface on a flat map. The theory of conic sections, which is considered
the highest achievement of Greek mathematics, may have been developed in order to solve thesc problems. Greek columns tape: from the bottom to the top, but to the rectilinear tine of the shrinking there is applied a curved line, so that the column seems to swell sllghtly toward the middle. If we consider the scheme I have presented for the oalculation of the lengths of the degrees, a scheme in which a basic simple progression was modified by the addition of anolher progression, we can understand why Greek columns diminished in diameter from boltom to top according to a combination of two lines. In the case of the columns of the Parthenon, tho added curvature, called entasis by the Greeks, is a hyperbolic curve, but in other temples we meet wilh is a hyperbolic curve, but in other temples we meet wiih
more complex mathematical curves, it may be enough to say more complex mathematical curves. it may be enough to say this much here: if one assumes that the bottom of the lop the latitude of Athens, the proportions of the entire lop the latitude of Athens, the propo
colonnade can be readily explained.
V. TEXTUAL EVIOENCE

For lack of space, it is impossible for me to present here the evidence for what I have stated to be the Egyptian estimates of the length of the degrees ot latitude, since this evidence was obtained by gathering scores of scattered pieces of information, the interpretation of which often involves delicate issues of textual interpretation. But the preaccupalion with geographical distances was so dominant in Egyptian civilization that one can find many documents the Egyptian civilization that one can find many documents the wall-known texts. It has taken me a great deal of painstaking well-known texis. It has taken me a grest dcal of painstaking research to fit these documents together, in order to arrive
at a unified view of what was the Egyptian system of at a unified view of what was the Egyptian system of geography; but the interpretation of single documents per se in many cases did no: present difficulty. Whal is difficult to explain is why Egyptologists have stubborniy refused to accept these documents at their face value. In order to illustrate how Egyptologlsis operate in order to slough off the evidence, I shall present two examples of such nature that the issues involved can be understood by the nonspecialis.

Inscribed Cubit Rules

1. In 1921 the famous Egyptologist Ludwig Borchardt wrote a report on three Egyptian measuring rules found at the remple of Amon in Thebes. These three royal cubit rules
bear an identical Inscription. The Inscription appears to bo a traditional one; for reasons of style the text of the inscription has been ascribed to the Old Kingdom, although the rules themselves belong to a later period, It is known that at times measuring rules were given a sacred meaning, although nobody has ever asked why: it should be evident to the reader of these pages why a measuring rule could be a sacred oblect for the Egyptlans. The cubit rules studied by Borchardt, according to his repon, seem to be of the type used as sacred objects rather than as instruments of actual measurement.

Borcharct did not test the length of these rules, but concentrated his attention on the inscription. The essential meaning of the inscription is open and clear, even though a professional Egyptologist may find difficulty with some of professional Egyptologist may find difficuity with some of
the hieroglyphs, as it often happens when archaic hieroglyphic texis were copled centurles later when the language and the writing style had changed. The inscription states that the distance betweon Behdet and Syene, the area of the First Cataract, is 106 afur, end divides this distance into 20 atur from Behdet to a place called Pi-Hapy, and 86 atur between Pi-H apy and Syene.

Borchardt considered the ovident possibility that the distances should be understood as differences of latitudc, but dismisses it outright: "one mus! absolutely exclude the possiblily that the anclents may have measured by degrees." No further words are added to justify this drastic pronouncement. Then he states that it must bo a matter of measurements taken along the actual course of the Nile, the only measurements of which the Egyptians were capable. By measurements of which the Egyptians were capable. By
reterring to modern data about the length of the tine of navigation along the Nile, he concludes that the inscription expresscs a rough estimate.

He proceeds by remarking that the inscription provides an excellent oppontunily to estabilish the value of the important Egyptian linear unit atur. He observes that by reading documents that contain calculations in atur one gathers that the value of the etur in royal cubits must be expressed by numbers such as 5000 or 10,000 . Finally, he concludes that, given the length of the course of the Nile from one end to the other of the country of Egypt, the atur must be 20.000 royal cubits.

I have concluded that the atur is 15,000 royal cublts (7862.225 meters), and this inscription bears me out. The difference of latitude between Behdet and the southern IImit of the First Cataract is $7^{*} 30^{\prime}$. Now, 106 atur is 1.590 .000 royal cubits $=833,395.8$ meters. The distance between $24^{\circ} 00^{\prime}$ and $31^{\circ} 30^{\circ}$ is $831,091.6$ meters according to the

Search inside

Smithsonian Geographical Tables. The Egyptian figure is in excess by 2200 metors, or $2 / 7$ atur. The excoss is not surprising, since the calculation of the length of Egypt as ending at Behdet was originally related to the geographic cublt and not the royal cublt. I have explatned that the geographic cubit was defined as $1 / 1,800,000$ of the sength of Egypt to Bohdol. In atur of 17,000 geographic cubits, this length could be expressed as 106 atur ($1,802,000$ geographic cublis) $=631,971.7$ meters. with only a small excess over the Initial figure of $1,800,000$ geographtc cubits $=831,048.4$ meters.

The calculation of the length of Egypt to Behdet as 106 atur of 15,000 royal cubits has the virtue of indicating the length of the arc of meridian from the equator to the pole: since the length of Egypt to Behdet is $7^{\circ} 30^{\circ}$. it is $1 / 12$ of this arc. Muitiplying 106 atur by 48 , we have a great circle of 5088 atur $=40,002,998$ meters, which is an excellent figure (212,000 cubits to degree): Helmert's figure of $40.008,288$ meters dilfers by less than an atur.

The purpose of the Inscripilon on the rules which were ound at the Temple of Amon in Thebes is to stross the scientific value of the calculations by the septenary royal cublt. which was a matter of essentlal political Interest to his temple, as I will explain in the second part of this chapter.

The calculation of the length of Egypt as 106 atur had also the purpose of indicating by one of the usual numerological games that the average degree of lattude is 212.000 royal cubits $=111,119.4$ meters; 212,000 was the Egyptian ound figure for the average length of the degree of latitude (stadium of 353,333 royal cubits). If the average degree is identilied with the middle degree. the degree at parallel 45° his figure is only 2 cublis shont of the Egyptian estimate of 12.002 cubits $=111,120.5$ meters for this degree. The astimato of tho Smithsonian Geographical Tables is $11,121.0$ meters.
2. The Inscription on the sules divides the interval of 106 atur into 86 atur from Syene to Pi-Mapy and 20 atur trom i-Hapy to Behdet. It occurs immediately that the two ligutes must refer to Northern and Southern Egypt. But the liguse of 20 atur is slightly too much for Northem Egypt and that of 86 atur is slightly too itile for Southern Egypt

If the degroe is calculated as 212,000 royal cubits, 20 atur $=300,000$ cubits is too much for the interval between Behdet and the apex of the Delta, sInce $1.4^{\cdot} \times 212.000=$ Behdet and the apex of the Delta. since $1.4 \times 212.000=$
286,800 cubits. Conversely, 86 atur would be $1,290,000$ cubits, whereas the distance from $24^{\circ} 00^{\circ}$ north to the apex Is 6.1°, and $6.1^{\circ} \times 212,000=1,293.200$ cublis. In elther case
there is a difference of 3200 cubits. Hence, the breaking point in the calculations must be somewhat south of the apex of the Delta.

Even though Egyptologists ignore scientific geography, there are specialists of Egyptian toponymy, that is, the study of local names. These have wondered about the identification of the locality of Pi-Hapy. "House ol the Nile," mentioned in the inscription we are discussing. They have observed that in Egyptian texts Pi-Hapy is usually mentloned together with Kher-aha, athough PI-Hapy is a different placo. They have concluded that Pi-Hapy was on the right bank of the Nilo about 2 kilometers south of Kher-aha. But speclalists of Egyptian toponymy have lalled to identlity Kher-aha, which was a fundamental point of Egyptian geography: Kher-aha, called Kerkasoros by the Greeks, was the apox of the Delta, the point $30^{\circ} 06^{\prime}$ north, $31^{\prime} 14^{\prime}$ east, at the southern tip of the island al-WarraQ. Pi-Hapy, called Nllopolls by the Greeks, was on the right bank of the Nlie, facing the southern tip of the island al-Warraq. Since the Nile in Its course comes to the island al-Wartag from the west, the point Pi-Hapy wee on merldian $31^{\circ} 14^{\prime}$ east and could ve considered to be on the right bank of the Nile directly oppostie the apex of the Detra, or point Kher-aha. The width of the Nile between Kher-aha and Pi -Hapy, measured along meridian $31^{\circ} 14^{\prime}$ cast, fits well with what I have catculated to the distance between the apex and P!-Hapy (3200 royal cubits $=1,877$ meters).

The breaking of the distance of 106 atur into a segment of 20 atur by establishing a nev, reterence point called Pi-Hapy may have been Influenced by the calculation of the length of Egypt up to the base fine of the Delta as 100 atur (1,500.000 royal cubits).

In the inscribed royal cubit rules, the original estimate of 106 atur of 17,000 geographic cubits was interpreted in terms of 106 atur of 15,000 royal cubits, in order to link more closely the dimenslons of Egypt ($1 / 12$ ot arc of merldian counting to Behdet) to the measurements of the are of meridian. As I have stated, 12×106 atur $=1272$ atur $=$ $19,080,000$ royal cubits $=10,000,749.6$ meters is an exceltent estimate of the length of the arc of meridian, obtained with an extreme economy ot reckoning Let us not forget that the French metric system was ostablished on tho assumption that the arc of meridian is $10.000,000$ meters. Even today in practical reckoning we take 111,111 . meters as the round figure tor the average degree of latitude, whereas the figure of 106 atur for the length of Egypt indicates a round figure of 212.000 cubits $=111,119.4$ meters. which is more preclse, and is almost perfect if we take 212,000 cubits to mean the length of the degrce at the middle parallel.

Search inside

Akhet-Aten
Because Egyptologists have ignored the issue of geodetic pointe and of the linear units, the figure of the revolutionary Pharaoh Akhenaten has tumed out to be the most mysterlous and controverslal in the long history of the Egyptlan monarchy. although this Pharaoh was unusuatly articulate and selt-expressive in his utterances The articulare and sell-expressive in his utterances The archeologist Cyril Aldred, who is the author of the mosi recent study of the reign of Ak
(page 11) with this observation.

With the possible exception of Cleopatra, no tuler of Ancient Egypt has provokod a grester llow of ink trom the pons of hislorians, archaoologiste, moralists, novelists and plain cranks than the Pharaoh Akhenaten who govemed almost half the civlized worla for a briet span ouring ine foureenth century B.C.
The reason why even "plain cranks" write interpretations of the historical role of Akhenaten is that professlonal scholars have given the example. Because they have resisted accepting the solidily documented facts, established scholars havo dovoted their energies to debating theories such as that Akhenaten was Impotent. was a practicing homosexual, or a woman masquerading as a man; there are historlans who profess to be Informed aboul the Intimate relations between him and his wile, the beautiful Nefertiti. Since the picture of Akhenaten has remained indefinite and blurred, scholars Akre used it to prelect hetr own emollons. Those who do have used it to project heir own emolions. Those who do not like akhenaten preseni his a psychopaln and dispute abour tho clinical dofiniton or his IInoss. in ine middie are those who describc him as a playboy Pharaoh. Those who admire him have chosen to portray him either as some sort of Christian evangellst, an Anabapilst preacher thrown Into the midst of the history of Egypt, or, at the opposite end of the psychological porsonality scale, as an srtisto type, bent on freeing Egyptian culture fiom lis formalistic Iradition in order to release untrammeled individualistic seli-expression. If one were to fook for a common denominator among all the conflicting interpretations, one fact could be considered as univereally acceptod, in spite of the heated controversies, namely, that Akhenaten vias as far as possible from being a ratlonal scientiflc thinker. Neventheless, the documentary evidence suggests a style of thought that today we would call scientific naturalism.

There is a phrase which occurs again and again in the pronouncements ol Akhenaten and represents his effort to summarize his program by a slogan: "Living in maet." This is so obvious that Aldred declares (page 67):

There is in Akhenaten's reaching a constant emphasis upon maet, "truth," as is nol found Detore of alterwards.

It is agreed that maet was the central concept of Egyptian civilization and that the role of a Pharaoh was to be the defender and the living embodiment of maet. This concepi vias so baslc In Egyptian cullure that Aldred has no dilficulty In explaining it in a few words (page 25):

Tho king was tho personification of maot, a word which wo transtate as "rrulth" or "iustice." but has the extended mazning of the proper cosmic order at the time of ils establishment by the Creator. For it was oalleved that the gods had frsi ruled Egyo
afler creating it perfect.

The reader can easily grasp what was meant by meet by referring to what I have said about the geodetic system of Egypt Eut, having admitled what is indisputable. that Akhenaten savi himsett as the Pharaoh who would truly Akhenaten savi himselt as the pharaoh who would Aldred stops cold and does not draw the uphold maet, Aldred siops cold and does not draw ing regaies us with a chapler entitled "The Pathology of Akhenaten."
2. If Instead of trying to imagine what were the hloroglyphic notes of the psychoanalyst of the royal family, we consider the documented lacts, the most important action in the revolutionary reign of Akhenaten proves to be the establishment of a new capital for Egypt, the city of Akhet-Aten, "Resting-point of Aten." The miles-long remains of the buildings of this city have been found and excavaled in the locallity loday known as Tell el-Amarna. During the reign of Akhenaten a suostantial percentage of the national resources was dedicated to the construction of this city

Search inside

Scholars of the last century, who had not yet adopted the psychologizing fashlon, at least recognized the political meaning of the shilt in the location of the capital of Egypt. Akhenaten intended to cut at the root the power of the priests of the Temple of Amon in Thebes, who through their control of the national oracle, identilied with the god of this temple, had usurped the royal functions. But what these scholars did not know is that the Temple of Amon was the geodetic center of Egypt, the "navel" of Egypl, being located where the eastern axis ($32^{\circ} 38^{\prime}$ east) crosses the Nile, at the hel 17 of the distance from the Nie, al the equator to pole ($25^{\circ} 42^{\prime}$) $2 / 7$ of thal the god Amon was denti
The new city which was intended to replace Thebes as the capilal and geodetic center of Egypt was planted in a position which seems most undesirable in terms of what we would consider the function of a capilal city. Seme scholars have interpreted this fact as further evidence of the mental derangement of its founder. It was in an area of difficult access. where there had never been any known signilicant center: some scholars have doubted whether even viliages had existed there. It did not provide large flat areas for a major urban development. When maintenence was suspended fter the fall of Akhenalen, large sections of the new bulldings were washed away by the ratnwater rushing down orrentially from the surrounding clifts Even the climate as inferior to that of many other areas along the course of the Nile. Unless one sssumes that there was a compelling mathematical reason for choosing this location, one must gree that there is justification in claiming that what is often alled the "Tell el-Amama Revolution" was the product of a playful young man, or a religious fanatic, or a degenerate obsessed with his sex problems. Akhenaten himseli relates hat his courtlers raised objections to the selection of the new site, although he states that it was pointed out to him directly by his father, the god Aten.

The new capital tor the god Aten, who was raieed to tho tatus of the one true god. was set at latitude $27^{\prime \prime} 45^{\prime}$ north, al he mlddle point between the northernmosi point Belidet and to southem limil of Egypt at latitude $24^{\prime \prime} 00^{\prime}$ north. The ongitude could not be equally es significant, since the apital had to be on the banks of the Nile. II was one degree ast of the western axis of Egypi, thal is. $30^{2} 50^{\prime}$ easi.

Tho longitude, although it was not as crucial as the alitude, was significant according to the syslem that.the Egyptlans used to describe the east coast of Alrica. In order to describe this coast, down to the equator, the

Aeria viaw of the rell el-
Amama (AAF photo).

Egyptians used a system of right triangles, In which one side was one of the three axes of Egypt and the other a perpendicular to it; the hypotenuse usually indicated the course of a segment of the cast coast of Africa. The most mportant of these triangles was one oblained counting from Behdet $19^{\circ} 30^{\circ}$ south along the central axis of Egypt and then $19^{\circ} 30$ to the east, to reach a polnt $12^{\circ} 00^{\prime}$ north, $0^{\circ} 44^{\prime}$ east, near Ras Alula ($11^{\prime} 59^{\prime}$ noth $50^{\circ} 48^{\prime}$ east), a oint which was considered the extreme limit of the Arabien Gull. The ancients took the Gulf of Suez, the Red Sea. and he Gulf of Acen as a single entity, the Arabian Gulf, which at times they described as a river simliar to tho Nile. Tho eographical point in question is called Notou Keras, "horn of the East," by Strabo; it had a counterpart in the "hoin of he West," the innermost polnt of the Gult of Gulnea on the west coast of Atrica. The segment of parallel reaching the horn of tho East" from the meridian of Behdet marks the basic latitude $12^{\prime} 00^{\prime}$ north, halifway between the equator and the basic latlude $24^{\circ} 00^{\prime}$ north, and Disects Lake Tana, the source of the Blue Nile. The Nile was considered to have wo sources, one et the equator (White Nile) and one at latitude $12^{\circ} 00^{\prime}$ north (Blue Nile). This system of calculations or the geography of the area east of the course of the NIIE has an importance which earries beyond ancient history,

Search inside
since the establishment of a geodetic point 10° south of Behdet and 10° east of the western axis ot Egypt explains the origin of the religious importance of Meccs. The essonce of this system of calculations was that points to the east of Egyp! were identified by drawing perpendiculars to the course of the Nile. Considering this system in relation to the position of Akhet-Aten, if one counts easi from it as much as it was south or Behdet, that is $3^{\circ} 45^{\prime}$ one reaches the as il was south or Behdel, that is $3^{\circ} 45$. One reaches the sea al a point presonly called lsland Ghanim foll Cape Az Zayniyah, called Drepanon Pro $27^{\circ} 47^{\prime \prime}$ north. $33^{\circ} 35^{\prime}$ east); Cape Az Zaytiysh together with the island south of it was considered the southernmost limit of the Gull of Suez on the Egyptian side; it was assumed that the lino drawn from Behoet to this point gave the course of the coast of Egypt on the Gult of Suez.
3. The most revealing pleces of evidence uncovered In the area of the new capital established by Akhenaten are the so-called "Boundary Stelae." Along tho outskirts of the now cliy there have been found huge inscriptions, either cut on piltars or cul on the cliffs, which contain a text substantlally identical in the fourteen samples which have been uncovered so far. These inscriptions proctaim what was for Akhenaten the leading idea behind the estabilshment of the new capital.

The Inscribed text relates in detall the rliuals periormed in the establishment of Akhet-Aten, "Resting-point of Atten": but the greatest emphasis is placod on the setting of iwo boundary pillars, one of the extreme north and one at the extreme soulh of the sacred territory of the city, at a distance of 6 atur, $3 / 4 \mathrm{khe}$, and 4 cubits flom each other. Atter setting these pillars the King took a sotemn oath, to be repected at regular intervals, never to remove or displace them and to restore them in the same identical place in case they were moved or damaged.

It should be obvious that the figure of 6 atur, $3 / 4 \mathrm{khs}$, and 4 cubits, givon with numerical procision, is the key to the reason for the establishment of the new caplial. Novertheless, only one Egyptooglst has made an effort to interpret these ligures. This effort was a halt-hearted one; Il ignored Egyptlan geographical texts and paraltel occurrences of the terms atur and khe in Egyptian writings. Nevertheloss, over since, scholars quote this interpretation If they bother to since, scholars quote this interpretation If they bother to
mention the dimensions of Akhet-Aten In dealing with its ostablishment. The interpretation took as a starting point the distance between the relatively northemmost and the relatively southernmost of the fourteen inscripllons which have been found, and divided this distance by 6 to conclude that an atur must be 4000 royal cubits It can be objected

that the pillars which in some cases were erected to carry the text of the inscription cannot be tho boundary pillars of which the inscription is speaking, since the latter must be of such a nature and form thal their position could be established to the inen it stands to reason that when, after the collapse of the revolution, masons were sent to demolish or deface the monuments of the accursed Akhenaten, not sparing even the tombs of the members of his family, the work of desiruction musi have starten with the boundary work of desiruction musi have started with the boundary were scattered around. In any case, the Egyptian texts which mention distarices measured in alur positively exclude that an atur can be as short as 4000 royal cubits (2097 meters).

Search inside

As to the kho, the interpretation stated in a hit-or-miss manner that it is equal to 100 royal cubits. Nobody asked why Akhenaten should have selected a figure retined not only to $3 / 4$ ot khe, but also to 4 cublis. It was a matter ot such precision that the inscribed text indicates that oven knocking the limit markers or hilting thom with stonos would interfore with their function.

According to Egyptian practice, geographlc distances ould be measured either in geographic cubits or in royal cubits, The natural multiplo of the goographic cubit was the stadium, called khe in Egyptian, of $\mathbf{4 0 0}$ geographic cubits 600 geographic feet). whereas the natural multiple of the royal cublt was the atur of 15.000 royal cubits. But the two systems were merged by using an atur of 15.060 royal cubits (7862.2 meters) and an atur of 17.000 geographic cubits (7848.8 meters), and a khe of 350 royal cubits (183.45 meters) and a khe of 400 geographic cubits (184.68 meters). In the case of the inscripitons of Akhet-Aten, the occurrence of The figure of $3 / 4$ of khe suggests that a calculation by e 350 royal cubits would be an odd figure. It is my undersianding that the dimenslons of the district of Akhet-Aten were:

6 afur of 17,000 geographle cubits
$3 / 4$ of a stadium of 400 geographic cublis
4 gcographic cubit.
Total: 102.304 geographic cubits $=47,233.1$ melors
4. Even without considoring the oxact valuo of the units mentioned by Akhenaten, the figure of 6 atur should have nung a bell in the mind of Egyptologisls. calling to their attention the traditional ligure of 105 atur for the length of Egypt. Akhenaten wanted to emphasize that the "Resilng. point of Aten" was at the middle point of Egypt. By giving the new grodetic center a dimension of 6 atur, he lott 50 atur from it to Behdet and 50 atur from it to oarallel $24^{\circ} 00^{\circ}$ noth. This was particularly significant since there was anothor basic estimate of the iength of Egypt as 100 atur, anothor basic estimate of the length of Egypt as 100 atur,
from the base line of the Delta ($31^{\circ} 06^{\prime}$ north) 10 parallot $24^{\circ} 00^{\prime}$ north.

Before proceeding any turther 1 musi remind the reade that the traditional figure setting the length of Egypt al 106 atur did not intond to convoy information only aboul Egypt itself, but also to indicate the length of the arc of meridian, 12×106 atur.

Since the length of the geographic cubit was defined by considoring the distance from Behdet to parailet 24* 00° north equol to $1,800,000$ cubits, II tho distrlet of Akhet.Aten had had an extension of $0^{\prime} 25^{\prime} 30^{\prime \prime}$, It would have had a length of B alur $=102,000$ cubits. This length was increased
to 6 atur. $3 / 4$ stadlum. 4 cublts $=102,304$ cubits, in order to indicate that the average degree of latitudo on earth lis 240,715 cubits,

The figure of Akhenaten indicates tha! the average degree of latitude was estimated as 240.715 cubits, since $0^{\circ} 25^{\prime} 30^{\prime \prime}$ ot a degree of 240,715 is $102,303.875$ cubits. A degree of $\mathbf{2 4 0}, 715$ cubits is $111,736.6$ meters; the corresponding arc of meridian is $21,664,375$ geographic cubits $=$ $10,002,301$ meters. Hayford's forure is 10.002 .286 meters

Akhenaten wanted to prove that Thebes could not properly claim to be the geodetic center of Egypl and that he had chosen the geodetic center conforming to an absolutely rigorous interpretation of maet, the cosmic order of which the dimenslons of Egypt viere an embodiment. in order to follow absolutely exact standards of measurement. he reverted to the prodynastic geodetic system which counted in geographic cubits statting from Behdet. Thls system vias more precise than the system which counted in royal cubits (septenary unis) starting from the base line of the Detta. making Egypt equal to 100 atur of 15,000 royal cubils. Thebes could elaim lo be a geodetic cehter only in terms of the second system, which is septenary and makes the meridian of Thebes coinclde wilt the eastem corner ci the Delta in terms of the system based on the predynestla capital of Bohdot, thore could be no question that AkhetAten is the "true and just" navel of Egypt.

This conclusion Implles that one should reevaluate the entire histoncal rote of Akhenaten, taking as the starting poinl what he himself considored the initial step in his program to eatablish true and just conformity with maet. There is a possibilily that his revolutionary reforms, which extended from rellglon to art and tamily relations, vere understood as a general return 10 predynastic ideas and practices.
5. Since the Egyptian monarchy set the styie for the trappings of royal power thorughout the world, the prescriptions of Akhenaten aboul the dimensions of the territory of his capital did not remain without parallet in history. A striking parallel can be found in what may appear a most unlikeiy time and place. Saxon England.

Scholars are so Denl on princtple to interpret the history of measures and measurement in terms of the most crudo primitivism, that in most works of history that deal with English measures one reads that the English foot was originaliy set by the length ol the toot of an English king. The name of tho king whose lower oxtremities were so decisive varies from scholar to scholar, although, when one Ihinks about it (which is not done in matters of measurement) kings
of average human size should be excluded. There is agreement among scholars that the king In question reigne in the centuries following the Norman conquest, since it is assumed end often staled that before this time England did not have set units of measure. A variant of the falry tale about the English foot is provided by the historians who tell us that it was not a matter of the loot but of the arm of a king which decided the length of the yard (three feet). Usually the length of the arm of King Henry : (1068-1135) is mentioned in this connection.

Such statements are made in sple of the fact that It is not necessary to be a specialist in the history of measures to find out that a fool equal to the English fool was the basic standard of Russia, from the time of the first available historical records to the Soviet revolution. I grant that it takes a specialized historical training to trace the linear standard of England and Fussia to the ancient Orient, but I may also observe that there are well known Greek temples which have been planned in English feet, and that archeologists of English and American nalionality have studied them without realizing what they had before thetr oyos

Historians could have developed less benighted notions about the origin of English measures, even without extending their horizon beyond the British isles, because there is a law of King Athelstan (924-940) which defines the length of the English foot. The text of this taw Is Included in the standard collections of medieval English laws. The v/ords of law of Athelstan vere repeated exactly in the legislation about measures issued by King Henry I. The law of Athetslan provides the most fundamental text for the study of English measures, but it has been ignored

Athelstan prescribed that the king's girth shall extend from the royal residence for a distance of 3 miles, 3 furtongs, 9 acres, 9 fect, 9 palms, and σ barloycorns. The King's gitth was the area considered a direcl exiension of the King's place of residence arid as such the area in which the King's peace was in force. This was tho area in which attacks on private persons were crimes against the Crown
Thecks on private persons were crimes against the Crown.
The picturesque language of the law means that the King's girth extends tor a sadius of 18,250 teet, since it is a matter of the foliowing units:

mile	5280 te
furfong	000 lac 1
acro	66 foo:
paim	3/4 100:
barleycorn	$1 / 3$ inch

The lew employed a form of expression which had a particular numerological rhythm and at the same time defined the value of the multiples and submuitiples of the foor.

My understanding of the law of King Athetstan is that
 latilude. The King's girth extended 6 minutes or $1 / 10$ of degree from notth to south. This Implles that a degree was undersiood to be 365.000 English reet. which is the lengin of the degree at the latitude of towns like Whinchester.
A more detailed enelysis of the law of Athelstan belongs o a study of English measures. What is important to stress here is that the English foot was defined by length of a streten of 1 / 10 latitude around the king's place of residence. The political conditions of the feudal society of Saxon England were very different from those of Phareonic Egypt, but the method used by King Atheistan in order to relate his power to the system of measures and to the cosmic order hears a remarkable simitarity to that adopted by the Pharaoh Akhenaten.
vi degrees of longitude

1. When the Egyptians fixed the value of their fundamental unlt of length, the geographic cubit, they chose as standard degree the dogree of latitude 3 3 $27^{\circ} 45^{\prime}$ north. taken as the middle latilude of Egypt. When thoy reca!culafed the dimensions of Egypt in terms of royal cubits, they chose as the middle latlude $27^{\circ} 33^{\prime}$ north. These latitudes were chosen taking into account the length of a degree of longitude at the equator. Latitude $27^{\circ} 45^{\prime}$ is the hall of atitude $55^{\circ} 30^{\prime}$ and latitude $27^{\circ} 33^{\prime}$ is the hall of latiude $55^{\circ} 06^{\prime}$. The Egyptians assumed that at the tivo higher lathudes a degree of latitude is equal in length to a degree of equator.

According to the Smithsonian Geographical Tables, a degree of latitude at parallel $55^{\circ} 30^{\prime}$ is 111.324 .7 melers, but probably the Egyptians calculated it as 361,680 geographic eet $=\$ 11,323.5$ meters: this degree is equal to the fundsmental degreo of 360,000 goographic feet (600 stadla) plus 2.8 stadia or plus $1 / 214.23$. According to the Smithsonian Geographical Tabies a degree at parallel $55^{\circ} 00^{\prime}$ is $111,317.3$ meiers. According to the Egyptian table of the tengths of the degrees of latitude which I have reconstructed, it is $212,378.5$ royal cubits $=111,317.3$ meters. This length could ee expressed also as 361,660 geographic feet $=111,317.4$ meters, that is, as 800 stadia plus 2.7666 stadia. This Implies that the Egyptians estimated the equatorial circte elther as $130,204,800$ geographic feot $=40,076,478$ motors or as

Search inside
$\mathbf{3 0}, 197,600$ geographic teet $=40,074,261$ meters. 1 suspec hat they began with an esilmate of 130,200000 geopraphic eet (degree of 361.656 feel $=360.000$ 1eel plus $1 / 216$) $=$ $40,075,000$ meters, and then modified the figure in order to establish a relationship between the equatorial degree and the degrae of the middle latitude ol Egypt. The Egyptian estimate agrees with our current ones: the equator is 40.075.452 meters, accoraling to the Clarke Spheroid and $40,076,596$ meters according to the International Spheroid.
Very revealing is that a base line was marked along parallel $45^{\circ} 12^{\prime}$ north on the north side of the Black Sea. This base line started Irom the mouth of the Danube. cul across the Crimea, and ended at the foot of the Caucasus. Beginning from this base, Russia was surveyed for a length of 10 degrees, along the three meridians which formed the hree axes of Egypl, up to latitude 55" 12^{\prime} norlh. The rive Dnieper was understood to be a symmetric counterpart of he Nile, running between the same meridians, Key positions along the course of tho Dnieper were idontified with corresponding koy positions along the course of the Nite, up to the point of translerring Egypitian place names to Russia. The information aboul the existence of this geodetic system is provided by the doscription of a map of Russia which is based on it. The description of the map Indicates that it was used at the end of the sixth century E.C., but the map may be older: In any case there are other sources of information about the base line which indicate that it was marked in vory oarly times.

The ligures of the geodetic system on which the map of Russia was based are most intriguing. The base llne at parallel $45^{\circ} 12$ north suggests that it was decided that it is at this latitude that the degree of latitude has a length equal to the average length of the degree of latitude. The fact that the meridians of Egypt were foliovied for 10° up to parallel $55^{\circ} 12^{\circ}$ noth suggests that it was decided that a degree of tatitude at this parallel is equal to the length ot a degree of qustor.

The designation of $45^{\circ} 12^{\prime}$ north for the location of the average degree Indicates what the Egyptians assumed to be the degree of elliplicity of the earth According to the Smithsonian Gecgraphical Tables, the length of the degree of latitude at the point $45^{\circ} 12$ north is $111,134.9$ meters; from lhis figure we would get an arc of meridian of 10,002,141 meters According to the Egypilan table of the length of the degrees of latitude that I have reconstructed, the degree at the point $45^{\circ} 12^{\prime}$ north is $212,028.6$ royal cubits $=111,134.4$ meters; this length Implies an arc of meridlan of 10,002.099 meters According to the Smirhsonlan Geographical rables
the degree ending at paralle! $55^{*} 12^{\circ}$ is 111.319 .3 meters: If this is laken as the length of the degree of equator, the equatorial circte is $40,074,948$ meters. According to tho Egyptian table of the length of the degrees of lattude, the degree at $55^{\circ} 12^{\prime}$ north is 212,381 royal cubits $=111,319.1$ meters, this would indicate an equatortal clrcle of $76,457,160$ royal cubits $=40,074,890$ meters (stadium of equator $=$ 353.96833 cubits).
2. In performing astronomical observations it is necessany to express differences of longlfude in terms of units of time. The equator and all parallels are divided into 360 degrees, but consldering the rotation of the earth it is expedient to divide the equator and all parailels into 24 hours. Given $360 / 24=15$, a minute or a second of time is equal lo 15 minutes or 15 seconds of degree.
in astronomical calculations, there are employed iwo different kinds of timo, solar time and sidereal lime. Solar time is our ordinary time. Solar time assumes that the day is the interval between two successive passages of the sun at the merldian. The length of the day so detined varies greatiy according to the seasons of tho yoar; it varies by more than $1 / 90$. The reason for this variation is that the speed of the earth along its orbit around the sun is not constant and that the apparenll motion of the sun around the earn does not follow the line of the equator, but of that of the ecliptic. Henco, in ordinary life we reckon by mean soler time, which is oblained by assuming that a fictitious sun moves along the celestial equator at a speed equal to the average speed of the sun along the ecliptic

Mean solar time is a highly artificial concept and we can use it because we have mechanical clocks. The ancients calculated by sidereal time, which they couid measure by observing the apparent movement of the vautt of heaven Sidereal time has the advantage of llowing evenly. There are amall variations due to the nutation of the earth under the Influence of planets; but these varlations are too small to be retevant to the calculations we are considering
A sidereal day is the interval between two passages of a star al the meridian. A sidereal day is shorter Ihan a solar day. Il one observes a star at the meridian today, that star will be again at the meridian in less than a solar day. In othor words, if ono counts by soiar time, the vault of heaven rotates about one degree more than a lull circle in a day. The ditference berween mean solar time and sidereal ume can be easily computed, because in a yoar the vault of hoavo makes exactly one more circle around the eath than the number of circtes made by the sun.

Search inside

Hence the ancients coutd reckon:

$$
\frac{\text { Solar time }}{\text { Sidoreal time }}=\frac{366}{365}=1.00273972
$$

or more precisely:

$$
\begin{aligned}
& \text { Solar Ilme } \\
& \text { Sideral ime }
\end{aligned}=\frac{366.25}{365.25}=1.00273785
$$

They did not need a formula more precise than the second one; today we reckon by the ratio 1.00273791 .

The ancients simplified this complex matter by counting by the speed of movement of a point at the equator. That spued was taken by them as constant: the infinitesimal variations in speed of the rotation of the earth on Its axts are retevant only to some calculations ol modern astronomy.

The spood of a point at the equator in terms of moan solar time was oblained by dividing the length ol the equator into 24 hours $=1440$ minutes $=86,400$ seconds. But the ancients were concerned particularly with the speed of a point at the equator in terms of sidereal time A minute of time (solar time) corresponds to the length of 15 minutes of degree of equator. A minule of lime (sidereal lime) is equal to the same length mulliplied by 365.25 ; 366.25 , that is, it is shorter
3. When the Egyptians standardized their system of measures by establishing that the degree of the middle latitude of Egypt is 240,000 geographic cubits $\mathbf{(3 8 0 , 0 0 0}$ geographic feet $=600$ stadia) or that $1 / 48$ of great circle measured from $24^{\circ} 00^{\prime}$ north $1031^{\circ} 30^{\prime}$ north is $1,800.000$ geographic cublte, they must have had in mind the following equivalence:

> 1 second (side roaltimo) $=1000$ cubits 1 mlnule (sidereal time) $=60,000$ cubits $=$ $1 / 4$ iength of degree of lalitude in Egypt

This catculation was convenient. but impiled an equatorial degree (degree of latitude in Egypl $\times 1.00273785$) of degree (degree of latitude in EgYpl $\times 1.00273785$) of
$111,109.8$ moters, which is slightly too short: it is the length of a degree of longitude al about $3^{\circ} 30^{\prime}$ from the equator.

In order to obiain the righl length of the second and minute ol sidereal lime, one must take as reference a degree of latitude further north then Egypt. The degrees at tho latitudes of Dodona and Delphi provlded the correct values.

Classical Greece was not a unified country, being divided into cities proudly cllinging to their absoluto polltical independence; but, most incongruously, it had a national oracular center, Just as Egypt, a strongly unifiled country. had a national oracular center at the Temple of Amon in Thebes. In Greece there were two centers which competed

Another Greak coriception of an ompholos at dorivod from the Egyplians.

Omphatos of Delphl depicted with two pigeons (usually racing each oiner), evidenily
carter Dlgeons used for estab. lishing geographic distancos. According to Greek legends. a central geodetic poinl was
oblained by loosing two binds obtained by loosing two binds
of equal strength and using the mean of the time employe Ine mean of the lime employed
in flight. This would allow for difterences in wind current and other variables. By repeated measurements could de cotrined.
for the role of national oracle, Dodona and Delphl. The oracle of Dooona was considered more ancient and many Greeks considered it more authoritative, but it was at a praotical disadvantage because it wes located beyond the llmits of solidly Greek lerritory in an area ol most diflicult access. In modem Greece. which exlends more widely than ancient Greece, Dodona is near the Albanian trontier. The position of the oracle of Delphi, oven though not as surprising as that of tho oracle of Dodona, wes peculiar; it was located in the mountains, north of all major centers of Greece.

The Greeks narrated that two doves Hew frem the temple Amon in Egypt in order to establish the oracles ol Dodona of Amon in Egypt in order to establish the oracles of Dodona of two doves is the standard symbol for the stretching of meridiansand parallels.

Because the oracle of Delphi was less isolated, it received more altention and consequently wio are better informed about II. Delphi vios considered the geodetic center of Greece. The god of Delphi. Apollo. whose name means "the stone," was Identified with an object, the omphalos, "navel," which has been found. it consisted of an ovoidal stone /the ovoidal shape incicated the lengthening of the degrees of latitude as one moves north) covered by a et. The net was the symbol of what even today we call the et ot meridians and parallets. The omphalos of Delphi was simllar to the object which represented the god Amon in Thebes, the "navel" of Egypt. In 1966 i presented to the annual meeting of the Archeological institute of America a paper in which I mainlained that historical accounts, myths, and logends, and como monuments of Dolphi, indicate that the oracle was established there by the Pharaohs of the Ethiopian Dynasty, Thls is the reason why the Greek portrayed Delphos, the eponymous hero ot Delphi, as a Negro.

The relevance of the latitude in the location of Dalphi is indicated by a number of Greak accounts which associate Delphl with Sardis, the capital of the kingdom of Lydia in Asia Minor, which is on the same parallel ($38^{\circ} 28^{\prime}$ nonh $)$

The role of geography in the oracular importance of Delphl is indicated also by the method employed in obtaining oracular responses. Modern scholars who have been impervious to the rational elements of ancient thought and prefer to ignore that Apollo, the god of Delphi, was a god of reason and scientific thought, are generally inclinod to think that the oracular responses were given by a priestess who, put in a trance by orug lumes, uttered gibberish. But there is abundent pictorial evidence which shows vividly how the oracle was consulled. An object which resembies a roulette

Search inside

Egyplian omphati with twin picted In Eavot as earty as toe Fourth Dynasty, and wore evidenuly used lo establien paraltels and meridians from prohistorict times. Homing
pigeons, which Ily in a straight thie (as the crow filesl), could cover the more than five hurd ded miles from one end or Egypl to
singlo day.
wheel, and aclually is its historical antecedent, was centered on top of the omphelos. The spinning of a ball gave the answers; eech of the 36 spokes of the wheel corresponded 10 a letter symbol.

In studying anclent computing devices. I have discovered that they were used atso to obtain oracular answers. This is the origin of many of the oraculer instruments we still use today, such as cards and ouiia boards. The psychological loundation of this phenomenon is simple, If i have a problem in interpreting an anclent text or an archeological report, 1 "consult" my calculating machine which "gives me the answor." By strotching this Imogery further, one could assume that the calcutating machine is an oracle. The rouleite wheal of Delphl originally was a speclal kind of abacus for calculating in terms of angles

The latiludes of Dodona and Delphl are signiticant. The longth of the degree of latitude at the peralilels of these two oracular centers gave the length of the minute or second of sidereal lime. that is. the distance covered by a point at the equator in a sidereal minute or second of rotation of the earlh.

Dodona is at $39^{\prime \prime} 32^{\prime}$ north. According to the Smilhsonian Geographical Tables a degree at this parallel is 111.014 .0 meters. This means that the degree must have been caiculated as 360.673 geographic feet (360.000 plus $1 / 535$) = $111,013.6$ metors. If we multiply this length by 1.00273785 , we obtain 361.660 geographic feet, the length of the degree of latllude at parallet $55^{\circ} 00^{\circ}$, which is equal to the length of a degree of longitude at the equator

If the figures employed in the reckoning of Dodona are rounded to a degree of 360.600 geographic feet and to a second of sidereat time of 1001.666 geographic cublis (thal is. 1000 plus $1 / 500$). we obtain the tength of the degree of latitude at the parallel of Detphi, which is $38^{\circ} 28^{\circ}$ north. A degree of 360,600 geographic feet is $110,991,1$ moters: A deres at parllel $30^{\circ} 28^{\circ}$ is 10,9935 meter mocer a degree al parallel 8 er is $14,935.5$ meters according to whe 1 at pre meters according to the Egyptian table of the length of dig or la la been chosen because it is at the standard distance of 6° from latilude $38^{\circ} 34^{\circ}$ north. which is at $3 / 7$ of the distance trom the equator to the pole, whereas the Temple of Amon in Thebes was set at $2 / 7$ of this distance.
4. Metrologisss of the posil have wavered in cstablishing the value of the geographic foot (and hence of the artaba), because they confused this unit with a similar one, the Greek foot, which is about half a millimeter longer.

Roman writers mention a Greek foot which is $25 / 24$ of
the Roman foot and a Greak stadium which is equal 10600 Greek feet or 625 Roman teet The Romans used the two units in conjunction. Roman roads were divided into miles of 5000 Roman feet, but at times between the milestonos there were smaller markers which divided the road into 8 Greek stadia $(8 \times 625=5000)$. In giving Itinerary distances. witers of the Roman period usualiy reckon by Roman miles on land and by Grook stadia at sea

Because Roman outhors indicate thal the degree is 75 Roman mlles or 600 Greek stadia, since the Renaissance melrologisis have deen concerned with establishing the exact value of the Greek foot; but in examining the empirl. cal ovidence they met with data that appoar conflicting, for the reason that they did not separate sources of information which apply to the geographlc loot. Travelers and sailors of the eastern Medilerranean and the Middle East used to assume that a degree of latitude is 000 geographic stadia (110,806 melers) and a degree of longitude is 500 geographic sladia (92.339 meters); Greek and Roman travelers and sallors used to assume that a degree of latitude is 600 Greek stadia $=75$ Roman miles (110.980 meters) and a degree of longitude is 500 Greek sladia $=60$ Roman milos (92.483 meters). As a result scholars have confused intormatlon concerning two different types of units. The contusion occurs easily, unless one assumes high standaros of precision and accuracy in ancient measurements, since we have:

Gecgraphic loot	$=307.1957$ millimeters
Geograptilc cubit	$=461.6535$ millimeters
Grook foot	$=308.276$ milimeters
Greek cubit	$=462.4147$ millimeters

$\begin{aligned} \text { Geograptilc cubit } & =\mathbf{4 6 1 . 6 5 3 5} \text { millimeters } \\ \text { Groak foot } & =308.2764 \text { milimelers } \\ & \end{aligned}$
Greek cubit $=462.4147$ millimelers
A degree of latilude of 600 Greek stadia $=75$ Roman miles is correct at parallel $37^{\circ} \$ 2^{\prime}$, which is the latitude of Mycenae. The system of calculation used by tho Groeks and Romans goes back to the Mycenean ancestors of the Greeks.

Archoologisis assume that, it the Greeks of the classical period measured badiy, the Groeks of the Mycenean aga did nol measure at all. it is assumed that when the Myceneans erected thels bulldings they placed one stone on 10 p of another withour much of a plan. However, we know that the Myceneans were engaged in extensive longdistance trade and ihrough it they accumulatod huge quanilles of gold of Alrican origin: long-distance navigation and exchange of precious metals were the two activities which created for the ancients tho most compolling need for exact slandards.

By examining the olmensions of Mycenean cltadels. I

Search inside
have ostablished thal thoy wero planned by a foot which is 15/16 of the Roman foot, a foot of 277.4488 millimeters. This foot has been called Oscan or Italic by metrologists of the last century. who noticed lis occurrence in preRoman Italy and in the earliest remains of Rome. I call his loot Mycenoan

The Mycencan foot not only is $15 / 16$ of the Roman foot f 295.9454 millimeters, but also is $9 / 10$ of the Greek foot of 308.2764 millimeters. The Greek fool is $25 / 24$ of the Roman foot and $25 / 21 \times 16 / 15=400 / 360=10 / 9$.

A dogroo of 360,000 Greok feet (75 Roman miles), a degree of latitude at the parallel of Mycenae, is equal to 400,000 Mycenean feel. The occursence of the factor 4 indicates that a calculation by time unfis is involved, since there are 4 minules of time in a degree. A minute of time is oqual to 100,000 Myconoan foot. Henco, by using the Greek cubit and the Mycenean loot, one could obtain the followIng easy formula:

Second of time $=1000$ Greek cublss
1Ainute of time $=100,000$ Myeoncan foct
Thoso units are slightly too short lor a socond and a minute of sidereal time. If voo take the degree of 360,000 Greek leet $=400,000$ Mycenean feet $=110,979.5$ meters and mulitiply it by 100273785 , we obtain a degree of 360,986 Greek feet $=1102834$ meters, which is the length of a parallel clrclo at about $1^{3} 30^{\prime}$ from the oquator,

But the numerical struclure of the units indleates how the exact length of the degree of equator was obtained by introducing an easy correction. One starts with these data:

```
1000 Gleak cubits = 1 second of lime
```

Day of 86.400 seconds $=88.400,000$ Greek cublis
00.000 My conean feet $=1$ minute of time
Day of 1440 minules $=141,000,000$ Myconean teet

These figures can be modified as follows:
Equator $=86.668 .606$ Greek cubits $=40.075 .939$ melers Equator $=144.444 .444$ Mycenean feet $=40,075.939$ meters Similarily, one may start with the Greek foot and obtain
$\begin{aligned} 100 \text { Greek feet } & =1 \text { second of degreo } \\ \text { Circlo of } 1,206,000 \text { coconds } & =129,600,000 \text { Groek fee }\end{aligned}$
The last figure can be modified to
Equator $=130,000,000$ Greok foct $=10,075,939$ moters
All that was needed in order to obtain the exact length of the equator was to assume that a circle is equal to 1,300.000 seconds of degree, instead of 1,296.000.

It is possible that thls formula was used to calculate the actual length of the solar day in the different seasons ot
the year. Today atmanacs assign the value ol 1200 to the length of the mean solar day and list a figure gieater or smalter than 1200 in order to Indicate the actual length ot the solar day tor each day of the year possibly the ancients procoodod in a similar way, assigning the value of 1300 0 the mean solar day.

Archeologists and historlans assume that the Myceneans had no concern with science, but the most famous remains of Mycenean clvilization proclaim otherwise

The best known monument of Mycenae is the entrance gate which today is calied the Lion Gate, because he who approachos the city is overoowered by a huge relief sculpture on the triangular capstone of the entrance; the rellet consists of a column between two tacing llons. The rellet consists of a column between two tacing llons. The zontal lines. At the bottom the column rests on a support on which three parallel lines arc strongly marked. These three ilnes are the same three lines which occur in the hleroglyphlc symbol for Southern Egypt: they represent the ropic of Cancer, which was identified with parallels $24^{\circ} 06$ $24^{\circ} 00$, and $23^{\circ} 51^{\prime}$ north. The column ropresents the three basic meridians of Egypt; the curvature of the column ugests the develorment of the system of meridians to the east and the west of Egypt On top of the capital of the column (symbol for Northem Egypt) there rests what appears lo be a segment of a floor. This segment of floor is on hree tevels. The bottom and the top levels are two hori zontal lines. whereas the middle level consists of four circles. I have explained the significance of the fector 4 in the Mycenean system of linear units. The top part of the relief represents the parallel of Myccnae.

Search inside

The grave circle at mycenae excarated by Schilemann, A goodetic point for setronomica cular henges and mounds of cuar henges and mounds of
tho socond millonnium B.C. elsewhere in Europe

The two lions which face each other on the sides of the column represent a circle closing on itself. The easiest way to convey the meaning of this symbol is to refer to pieces of ancient jewelry which consist of a bracelet open at one side with a head of a lion on each open end. The lions represent the summer solstice. The stance of the lions, with the front paws on the line of the tropic and their hind paws extending below it (this stance will later become hind paws exiending below it (this stance will fater becom spread of the zodiacal band north and south of the ecliptic. the ancients established their astronomical system when the spring equinox was in Taurus, which ceasad to be true at the beginning of the second millennium B.C.: for them the point zeto of the sky was between the two horns of Taurus Today we count lrom the consteltallon of Aries. atthough the spring equinox has not been in Aries since the time when the Roman Emperor Antoninus Pius (A.D. 138181) celebrated the end of the age of Aries and introduced new cults and reilglous dellets in accordance with the beginning of a new cosmic age. When the spring equinox was in Taurus, the summer solstice was in Leo.

The cosmological meaning of the Lion Gate of Mycenae The cosimological meaning of the Lion Gate of Mycena
should not have been lost to archeotogists, since next to
this gate there is the second most impressive relic of ancient Mycenae, the so-called Gravo Circle. It consists of a circular arrangement of stone blocks. If excavators had not been complelety blinded by their beliel in the primitiveness of the Myceneans, they woutd have immediately assumed that this circle must have some cosmological meaning. Instead the Smithsonian Institution spent time and energy to procced to measurements of the skeletons and energy to procced to measurements of the skeletons within the circle, arriving at the conclusion found buried within the circle, arriving at the conclusion
that they were bones of ordinary size men and not of that they were bones of ordinary size men and not of giants. But the dimensions of the stone circle have not
received attention; it may be enough to report here that the received attontion; it may be enough to report here that the inner diamoler of the circle is 100 Mycenean leel.

When the first circuit of walls of Mycenae was erected. the Circle was outside the walls directly in front of the Gate; the middle of the Gate is on the line of the north south diameter of the circle. Later the circuit of the walls was extended so as to include the Circle within the citadel.
5. A splendid Illustration of the Mycenean system of linear unlis is provided by the Parthenon of Athens.

The Paithenon of Athêns is the enly Greek temple which has been surveyed with an adequate level of accuracy. But unloriunately for my Invesligation ofthe dimensions of Greek temples, the system of proportions of the Parthenon is an aberrant one. I have established the mathematical formula that determined the dimensions of Greek temples and the mathematical formula that determined the dimensions of Mycenean throne rooms: the Parthenon conforms to the talter and not to the former. The reason is that the Parthonon was built as a replacement on a larger scale of the Ternple of Athena destroyed by the Persians, when they sacked Athens in 480 B.C. The old Temple of Athena in turn was built on top of a Mycenean throne room, some remains of which have been found by deep excavations. For this reason the Parthenon was planned in Mycenean leet. whereas most of the other monuments of Mycenean the Acropolls of Athens were planned in Roman reet However, the major dimensions of the outer colonnade of tho Perihenon wore so chosen that they could be expressed also in Greek leet, which was easy since Mycenean fool and Greek foot relate as 9:10.

For the study of the Parthenon we can rely on dala that are satisfactory for some of the major dimensions, because at the middie of the last century an English architect and schoiar of the history of architecture. Francis Cranmer Penrose, who was also an outstanding dilettante astronomer. on the basts of reports on the mathematical curvatures of the lines of the temple became convinced that the Parthenon

Search inside

The so-catied Treasury of Alreus at Mycenaas built into
a mound with corbeled rooting simdiar to the Alses-Howe mound.

had boon planned and executed with high standards of mathematical skill. In order to prove his point he measured it accurately with the precision of one-thousandth of an English foot

Penrose, however, was ridiculod by archoologists, and no other Greck temple has been surveyed with comparable care ever since. The Archeolocical lnstitute of America does not support any survey or pubilcation which does not assume that the maximum precision achieved in construction of rotorenco foot rulos by the ancient Greoks was a fifith or at the very best a tenth of centimeter. Naturally, the precision achieyed in the construction of bulldings was much less than the precision of the olticlal reserence rutes.

Penrose was not able to convince scholars of his major contention, because he was obsessed es an erchitect with he notion that buildings should have perfectly square comers. He put this notion into practice when he planned the bullding of the British School of Archeology in Athens, of which he was drector for two short periods, after its foundation in 1882. Because of this obscssion, when Penrose found Ihat the weslern front of the Parthenon is longer than the eastern front and that the south flank is longer than the north flank. he concluded that this was the result of mistakes in construction. His opponents were quick to point out that, if it is so, his major contention is disproved.

Penrose belleved that the difference in the lengith of tho sides of the Parthenon results from mislakes in the marking of the four corneis which were intended to be perfect y square. In realily, the four corners of the Parthenon

Nheteenth-century view of the Parthonon.

The Troasury of Atrous at Mycenae lisometric view. atter Hood), which has a striking resemblance to the Maes-How burrow and appears to have been designev tor azimuth and
zenith observation, like tho subterranean chambers of the pyraunids.

vere not intended to bo exactly square, but to deviate by set small amounts from a right angle, as is the case with the four corners of the Great Pyramid. I have established that the west front of the Parthenon was intended to be $1 / 48$ of a Mycencan foot longer than the east front, and that the south flank vias intended to be longer than the north

Search inside
lank by tho same amount. The two longer sides join at the southwest corner, which is also higher in level over he other three comers. Taking these Intended deviations nto account, the actual lindings of Penrose about the longth of tho sides agreo almost perfectly with the theoretical dimensions obtained by mathematicel principles.
Even with the intended lengthening of the west and outh sides, the northeast comer. which joins the two most south sides, the northeast comer. which joins the two most
important sides, could have been a right angle, bul instead it was acuto by a figuro closo to a minute of degroe Unfortunately, Penrose mcasured the angle of this comer rather casually, because he thought that the lack of exact squareness ivas the result of a mistake in construction, and nobody alse has tested the angle of thls corner again in more than 120 years.

There are many problems in the architecture of the Parthenon that cannot be solved, because archoologists prefer io go on building fanciful theories rather than establish the facts by an accurate survey, it is a basic estabilsh the facis by an accurate survey. it is a basic thoories increases in proportion with the precision and ccuracy of the measurements; the converse is true, and this is what archeologists like, because, as they pul it, it permils the spitt to soar. Fot instance, is one were to accopt the loose standards ot measurement dogmatically adopted by the Archaoological Institute of America, it would not be too difficult to present an argument to the effect the the surface of the earth is concave.

In the specific case of the Parthenon, I can point out that Penrose tested the orientation of the north flank, and that on the basis of his finding I could establish that the parthenon is correctly oriented according to the lattude
and Songitude of Athens But details of construction have led me to realize that the orientation of the inner part of the temple, the celto, was a trifle dificrent. Since the difference of azimuth between the two tongitudinal axes of the Parthenon has never been tested, I am leff in the of the Park the fine points in the oriontation of the Parthenon,
an ul
An essential datum is that thore are simliaritios between tho mathematical structure of the Parttienon and that the Great Pyramid. In both constructions the comers deviate deliberately from a right angle. I have established that the elevation of the fronts of the Parthenon was calculatod by the factor φ and that the elevation of the Hlanks was calculated by the factor π. According to the dala avallable. I have Interpreted the elevation of the Great yramid to be such that the north slde was calculated by the factor φ and that the west side was catculated by the factor π.

Here, I will deat only with the horizontal dimension, width. of the two fronts of the Parhenon, because it is directly connected with tho Mycenean system of measures.

Before Penrose proceeded to a careful measurement the sides of the Parthenon in the winter 1846-47 the season of winter was deliberately chosen in order to reduce the effects of changes in temperature which may be macroscopic under the sun of Greece), an attempt at careful moasuremont was conducted in 1753, under unfavorable political and otysical circumslances, by the painter James Stuart and the architect Nicholas Revett, who had bocome interested in the measurements of ancient buildings while studying in Rome. The expedition of these two English antiquarians had been carefuliy planned and created great stir in Europa at the time. One of their specific aims, indicated in the campaign for the raising of the necessary funds, was to ascertain the exact length of the Greok foot and by inference of the Roman foot which is $24 / 25$ of Greek loot. The Parthenon is called Hekarompedon. "one hundred toot temple," in Greek texts and these texts indicate also that its width was 100 feet. Earlier visitors to the Parthenon had concluded that the tivo fronts of the temple measured 100 Greek leet. For this reason Stuatt and Revett provided themsolves with highly reliable instruments of measurement and paid the greatest attention to the measurement of the iwo fronts

They were so concerned with the length of the Greek foot that they reported the dimensions of the temple in such a way as to arrive at the results that were expected Their figures tor the lenglh of the fronts are scanly. But they
arrivod at the conclusion that the value of the Greek loot is 12.137 English inchcs $=308.2795$ millimeters, which agreed well with what scholars had estimated to be the length of the Roman fool ($24 / 25$ of Greek loot). According 10 my reckonings the Greek loot is 308.2765 millimeters.

Stuart and Revett used a yard rule prepared by the famous instrument-maker John Bird of London. A few years later (1762) Bird prepared a yard rute on behaif of the Panlamentary Committee appointed in $1758^{\text {" }} 10$ inquire into the original standards of veight and measure of this kingdom." Although Bird had to follow the instructions of the committee, it can bo presumcd thst the rule he built in 1762 did not differ in a manner significant for the present research from those he had bullt earlier. The Bird rule of 1762 was the main basis in the calculation of the Imperial Standard Yard made logal by Parliament in 1824.

What Stuart and Revelt did not know is that the fronte of the Patthenon were intended to be slightly more than 100 Greek leer

If the fronts had had a length of 100 Greek feet $=$ 111.111 Mycencen feet $=1111 / 9$ Mycenoan feet, they would have had a length equal to a second of degree of latituce al the parallel of Mycenae ($37^{\circ} 42^{\prime}$ north), whereas the latitude of Athens is $37^{\circ} 58^{\prime}$ north

The fronts of the Parthenon were planned 10 have a length of $1001 / 5$ Greek feet $=1111 / 3$ Mycenean feet. This fength was increased by $1 / 48$ of a Mycenean foct on the west tront. Hence, the lengths of the fronts, according to my interpretation, was:

$$
\begin{aligned}
& \text { Eastom front }=30,889.3 \text { millilmplore } \\
& \text { Western front }=30.895 .1 \text { milimeters }
\end{aligned}
$$

Penrose reponed the following findings:
Eastom Iront $=101361$ English leet $=30,889.7$ milllmaiers Western front $=101,361$ English leet $=30,884.6$ millimeters
The westein front is better preseived.
These flquses prove how accurate was the planning of the Parthenon and now fustified was Penrose in testing the dimensions of this tempie with the greatest care of which he was capable.

But all the horizontal lines of the Parthenon have a parabolic curvature. The sides of the temple have a double parabolic curvature: they are curved upward and Inward. The spacing of the columns proves that dimensions that were relevant were those measured along the parabolic line.

The two parabolic curvatures increased the length of the sides. What I have been able to establish vith cortainty is the effect of the combined double parabelic curvature on
the edge of the sides, dacause of necessity the spacing of the columns which were placed all along the sides had to be basod on the actual length of the odgo of the sides. The two curvatures added $8 / 48=1 / 6$ of loot to the length of the fronts. so that the eastern front measured $1111 / 2$ Mycenean leet $=10035$ Greek feet $=30.935 .5$ millimeters, Mycenean reet $=10035$ Greek feet $=30.535 .5$ milimet
when measured along the odge of the blocks. But in when measured along the odge of the blocks. But in
calculating the width of the temple one should consider calculating the width of the temple one should consider
only one parabolic curvature, the curvature upward, that is, in subslance, the curvature of the floor. Before expressing exact conclusions I would tike to see the results of a new survey of the curvatures of the Parthenon, but I can definitely state that the width of the temple measured along the curvature of the floor was halfway between $1111 / 3$ and 11 1/2 Mycenean leet, that is. close to $1115 / 12$ leet $=$ $30,912.4$ millimeters.

If we add to this amount the $1 / 48$ foot added to the western Iront, we have a length of $1117 / 16$ teet $=$ $30,918.2$ millimelers. This length would indicate an equatorial degree ot 111.305 .5 meters ano an equatorial circle of $40,069,988$ meters

It can be coneluded that the width of the fronts of the Parthenon was intended to indicate the length of a second of degree of longltude at the equator. But further testing of the dimensions of the Parthenon is necessary in order to ostablish what was exactly the length of the second of degree that the builders had in mind.

As I have indicated, the Mycenean system of measures, which was followed by the Greeks of the classical age, assumed an equatorial arcle of 144,444,44.4 Mycenean feet end hence a second of degree of equator of 111.45104 feet. This would imply a widlh of the Parthenon of $30,922.8$ millimeters.
VII. DIMENSIONS OF THE GREAT PYRAMID

1. Since the dimensions of the Great Pyramid have been endiessly debated, and studies of them have often degenerated into mystlicism, it is proper ihat in approaching the subject I clarily my method. The essence ot my method is to be absolutely pedestrian, I have epent years of my lite in trying to ascertain the exact length of the Roman foot, eliciting from the academy the reaction that It is a disgrace for a classical scholar to wasie energy on such mechanical for a classical scholar to wasie energy on such mechanical trivialities. Simitarly, after reading scores of studies on the architecture of the Parthenon, I set myself two tasks: to determine the length of the foot employed in the construc tlon, and to compare Item by liem all avallable modern

Search inside
reports on the actual dimenslons of this temple. I followed this lino of rosearch although I was warned by the loamed het a person guilty of such banausia, which in Greck means behavior vorthy of a manual wageearner, would always bemain bind to the tofty mind of the ancient Greeks, in良main blind to the lolly mind of the ancient Greeks. In ealing with the geometry of the Pyramid, I have taken as arking points my conclusions about tho length of the gyptian royal cubit and the survey of the dimensions of the Pyramid conducted by Cole, who was not an Egyptologis! but a protesstonal surveyot

Up to now the Cole survey has been neglected. Trust has beon put on the survey conducted by Petrie, but, although Petrie considered himself an expert of measurements (he slarted his career as an Egyptologist under the guldance of his tather, who was an engineer) and used all the diligence ol which he ivas capable, his survey proves to have arrived at misleading rosults whon oompared to that of Cole.
in order to justify my method, I shall reler to another great sclenillic issue which, as we shall see, happens to be glated to the problem of the dimensions of the Pyramid. in Principio Newton argued that because of the cenrifugal force generated by its rotation, the earth must be lattened al the poles. Reasoning purely on mechanical grounds, he concluded that the polar flattening is $1 / 230$, which means that tho polar radius is shorter than the equatorial radius by $1 / 230$ of the latter. The calculation was based on the assumption, which is not true, that the earth is a homogeneous fluid body following the survey of Picard, Ior which Newton waited before publishing his Principia in 1686, othor scholars of the French Academie des Sciences applied themselves assidiously to the problem of determining by geodetic surveys what was the actual shapa of the earth Their results were contradictory. but thoy were such that tor seventy years after the publication of the Principio the empirical evidenco could bo understood to indicate that the earth, far from being flattened al the poles, was elongated. This caused most serious controversias in the field of physical theory. I have reexamined tho records of this gerat debate to lind that the French scholars viere successful in advancing mathematicel theory in developing correct methods of triangulation, and in refining the lechniques of astronomical observation, but had neglected the need of selling a roliablo unit of linear measurement. The several survey's of the length of the degree of latitude, up to and including the famous survey conducted by Fathor Ruggioro Boscovich in Italy in 1751-53 (a survey which took as a starling point the Roman
milestones of the Appian Way), kept using standaros of the pled de rol which were different from each other

The history of those surveys is a comady of errors. This was sensed by tho keen mind of Voltalre who, when Mauperluis announced triumphantly that his survey of the degree conducted in Lapiano nad proved that the earth is tlatened at the poles, called him le grand aplatissour, "the great flattenor," building a pun on the extracurricuiter activities of Maupertuis with a Lappish maid
The difficulties of sclenilsts arose from the circumtance that the orlginal standard of the pied de roi had been lost. The pied de roi used to be a Iraction of tho ancient Roman foot, and good reference standards of the Roman loot and of the pied de roi were kept by French trade gullds. Bul, the french absoiute monarchy followed a pollicy of ellminating the public functions of the guilds. Finaily the minister Colbert issued an ordinanco prescribing that the only reference rule that could be used should be thal kept at the Chatelet, the seat of royal administration and jusilce in Paris. Bul the standard of the Chatelet was poorly delined and badly prolected trom accidental damage. This is the reason why many scholars could arrive al the starting scientific conclusion that the earth is elongated at the poles. The inteilectual confusion came lo a rest because the engraver Langlois buit his own private standard of the pied do roi, by assuming thet the pied de roi is the edge of a cube that contains 70 Parts liveres of water. Langlois's standard was used in astablishing tho Paris meter of the French metric system.
2. Although Petrie's survey of the length and orientation of the sides of the Great Pyramid proves to be unreliable, his survey of the dimensions of the King's Chamber proves to be superior to the several ones conducted since the seventeenth century Since Petrie's survey of the King's Chamber has establishod that tho royal cubit of the Pyramid measured 524.05235 ± 0.1016 millimeters, it permits the conclusion that the royal cublt employed in the construction was 524.1483 millimetors.

Cole began his survey of the length and orientation of the stcles of the Pyramid by trying to eslablish the exact location ol the comer points. By an extensive sounding of the foundations, ho located the comer points with a possible margin of error which he estimated as follows.

```
Wesi side: 30 millimeters at eilher end
North sido: 6 millimolore at aither end
North sldo: 6 millimotors al aither end
East side: 6 millimeters at eitherend
South side: 10 millllmeters al the west end
```

Search inside

Next, Cole examined the alignment of the four sides and conoluded that they meot to form angles which deviate as follows from a right angle:

> Northwest comer: $-0^{\circ} 00^{\circ} 02^{\prime \prime \prime}$ Nontheast comer: $+0^{\circ} 03^{0} 02^{\prime \prime}$ Soulheast corncr: $-0^{\circ} 03^{33^{\prime \prime}}$ Southwest corner: $+0^{\circ} 00^{\circ} 33^{\prime \prime} 3{ }^{\prime \prime}$

Interpret these data to mean that the west sido was drawn first and that the north side wes intended to be perfectly perpendicular to it. The east side was intended to be at an angle of 3 with the perpendicular to the north side, and the south side was Intended to be at angle of 30° with the perpendicular to the west side, In other worde the four corners were intended to deviate from a right angle according to the following pattern:

> Northwest cornar: 0 Northeast corner: +3 minults Southeast conre. $-31 / 2$ minules Southwest corner: $+1 / 2$ minuto

Heving established the alignment of the sides according to the figures mentioned above. Cole calculated the length of the sides to be the following:

West : 230,357 millimeters
 Norlh: 230, z53 millimotors
 Eas! : 230,391 millimeters South: 230.454 millimelors

There is a contradiction in Cole's report about tie length of the north side in the summary of the lengths of the sides, Cole states that this side is 230.253 millimeters; but in an earlier part of his report he states that the noth slde is divided into a segment ol 115,090 millimeters and a segment of 115.161 millimeters (total of 230,251 millimeters) and confirms these figures by explaining tha the difference between the two segments is 71 millimeters. This contradiction is most unfortunate, because It is a This coniro of mine that the lengths of the iwo segments conclusion or mine inar the length or the iwo segments of the noith slde provide a key to the determination of the vertical dimensions of the Pyramid. I am inclined to
inter that Colo found the north side to have a length of infer that Colo found
230,251 mittimeters,

I Interpret Cole's figures to mean that the basic length of the side iwas $4391 / 2$ cubits $=230,363.18$ millimelers. According to Cote the average length of the sides is 230.363 .25 millimeters. Each side was intended to have a length of $11 / 4$ stadia according to the stadium ot 351.6 cubits; for the Egyptian this was tho stadium ($1 ; 10$ minute) of the degree of latitude at the equator. The
perimeter of the Pyramid was intended to be 1759 cubils $=921.45271$ millimeters, Cole reports a perimeter of 921.453 millimeters. The perimeter was intended to be equal to $1 / 2$ minute of fatitude at the equator The length of the minute of degree of latitude at the equator was calculated 3516 cubits $=1842.905$ meters; it is 1842.925 meters according to the International Spherold.

In the calculation of the Pyramld the royal cublt was divided into 24 fingers, each finger being 21.8395 millimeters. Egyptian measuring rods indicate that the royal cubit, which in principle is composed of 28 fingers (lingers such hat 24 make an Egyptlan common cublt), at times was divided into 24 fingers according to the ordinary dlvislon of the cubit. There are Egyptian measuring rods in which the royal cubil is divided into 28 fingers on one face and 24 fingers ocil the other face

The west side was drawn first and then the north side was drawn perpendicular to it. The south and ine east ides were at an angle difforont from a right angle with the two neighboring sides. This caused variations in the length of the sides, but steps were taken in order to assure that the average length of the sides remained $4391 / 2$ cubits.

The south sido was intended to be at an angle $90^{\circ} 00^{\prime} 30^{\prime \prime}$ with the west side. Reckoning by tangent $0.00 .30^{\circ}$, thls would cause a lengthening of the east side of 33.494 millimeters. Apparently this lengthening of the east side was computed as $11 / 2$ lingers $=32758$ millimeters Tho lengthening of the east side was componsated in part by shortening the west side by $1 / 4$ of linger. In other words, the south side was moved backward by $1 / 4$ of finger. The west side came to be $4391 / 2-1 / 96$ cublts $=230.383 .1778$ $\mathbf{5 . 4 5 9 7}$ millimeters $=230,357.72$ millimeters. The east side was lengthencd by $11 / 4$ fingers, ato that it came to be $4391 / 2+5 / 96=230.303 .1778+27.2994=230,390.48$ millimerers

The western side was rolated at the middle point by 3 minutes, so es to shorten the north side and to lengthen the south side. Multiplying the Iength of hall of a side by tangent $0^{\circ} 03^{\circ} 00^{\prime \prime}$. there would be a shortening and a lengthening of 100.519 millimeters, which could be understood as $45 / 8$ fingers $=101.000$ millimeters. Since the eas slde had been lengthened by $11 / 4$ fingers and the west side had been shortened by $1 / 4$ finger, there remained an increase of a finger to be compensated. Hence, the north and south sides were shortened by $1 / 2$ finger each. In othes words the east side was moved backivard by $1 / 2$ finger
The length of the north side came to be $4391 / 2$ cublis $45 / 8$ fingers $-1 / 2$ finger $=\$ 3955 / 192$ cubits $=230,251,250$

Search inside
millimeters. The length of the south side came to be 438 1/2 cubits $+45 / 8$ lingers $-1 / 2$ finger $=439$ 129/192 cublis $=230.453 .266$ millimeters. The dilference betiveen the two sides is $74 / 592$ cubits $=202.016$ millimeters.

This analysis of tho mothod followed in planning the bsse of the Pyramid arrives at the striking conclusion that my estimates of the lengths of the sides, based on theoretical principles, do not dififer by a millimeter from those obtained emplrically by Cole (length of sides expressed in millimeters).

	My estimate	Coie's report
West side:	230,357.72	230,357
Noith side:	230.251.25	230,261
East slde:	230,390.48	230.391
South sido:	230,453.27	230,454
	921.452 .72	92:1.453

3. In his survey Cole pald attention to a detall which in my opinion provides the key to the entire geometrical structure of the Pyramid. The Egyptologist Borchardt had noticed that, at aboul the middie of the north side, a small line is marked on the pavement which extends outward from the bottom of the Pyramld. Cole measured the position of this line and lound it to be at a distance of 115,090 millimeters from tho northwost comer and 115.161 millimeters from tho northeast corner, with a difference of 71 millimeters between the iwo distances. He stated that this line ts "probably the original tine of the axis." Cole apparently did nol pay much attention to this detail, since he reported also that tho north side has a length of 230,253 millimeters. Reginald Engeibach, in presenting Cole's findings to the academic world, falled to notice the discrepancy in Cole's figures I suspect that the figure of 230.253 millimeters for the length of the north side crept into the Cole report as a result of a mistake of 2 millimeters in placing the end of the tape against the pin that marked the posilion of the line of the axis.

It the north-south axis of the pyramid is off center, it follows that the apex was off center. Petrie, when ho surveyed the slope of the Pyramid, on the basis of preliminary tests suspected that each face of the Pyramid had a different slope, but did not try to establish whether this suspicion was justified. Instead he concentrated his efforts on establishing the slope of the north face, which is the best preserved one. As far as I know. none of those who tried to interpret the geometry of the Pyramid on the basis of Petre's report considered the possibility that tho four faces of the Pyramid had different slopes. Nobody has ever utilized Cole's survey in order to interpret the geometry
of the Pyramid 11 the four faces have different slopes, it follows that the apex is off center

I have concluded that the north side had a length of $43955 / 192$ cubits $=230,251.250$ millimeters, Hence, 1 understand Cole's flgure to mean that the tine which divided the norh side into two parts is at a distance of 219 137/192 cubits $=115,162.479$ millimeters from the northeast corner, and a distance of $21955 / 96$ cubits $=$ $115,088.771$ millimeters from the northwest comer. The difference between the two segments is $27 / 192$ cublis $=$ 73.708 millimeters. I suspect that there was a mistake of 2 millimeters in setting the and of the tape against a pin at the middle of the north face; this is the reason why Cole reports that the north side has a length of 230.253 millimeters with an excess of 2 millimeters. This type of mistake is common in surveying.

A great number of those who have tried to explain the geometry of the Pyramid can be placed into one of these two categories: those who conclude that the Pyramid was calcuiated by the lactor r. and those who believe that the Pyramid was calculated by the factor 4 . In my opinion both explanations are correct, in the sense that the slope of the west face was calculated by the factor π and the slope of the nont face was calculated by the factor φ. The inclination of the other two faces was affected by tho faot that the angles al the northeast and the southwest were more than right angles.

For teasons that I shall explain below, I have concluded that the height of the Pyramid was either 279.53 cubits $=$ $146,515.174$ millimeters or a figure vory closo to 279.53 cubits.

According 10 what I have sald above, the distance of the apex from the west side was $115,088.771$ millimeters. If the west face was calculated by the factor π, the height of the Pyramid had to be $\pi / 4$ of the base of the meridian triangle of the west side. Now, 146,515.174 millimeters relates to 115.088 .771 millimeters as 0.78550752 . which would imply $\pi=3,142030$. I1 π was reckoned as 3.1420 , the height would have beon $146,516.522$ millimeters. By the exact value of τ, the height would have been 146.535 .569 mililmeters.

Because of Cole's teport we know the distance of the apex from the west side, but we do not have direct information on the distance of the apex foom the north slde. However, it can be presumed that the west-east axis was nol displaced from the middle position. It can also be presumed that the line of the nest-east axis was set according to the basic lengith of sides, before the tength of the

Search inside
sides was altered by the widening of the southwest and northeast corners. Since the basic length of the sldes is $4391 / 2$ cubits $=230,363.178$ milkimeters, it can be presumed hat the apex was at a distance of $2193 / 4$ cubits $=$ $115,181.589$ millimeters from the north side. If this is the length of the base of the meridian trlangle of the north lace. and the helght of the Pyramld is 279.53 cublts $=$ 146.515.174 millimeters, the base of the meridian trlangl of the north face is 0.78611103 of the height. If the north face was catoulated by the iactor p, the height should have been equal to $\sqrt{1 / \varphi}$ of the base of the merldian triangle. If one had recokoned by the exact value of 4 , the height would have been $146,513.250$ miltimcters. If the height as 146.515 .174 millimeters, as 1 tentatively assume and
 he northem hai millimeters, $\sqrt{1 / \varphi}$ was reckoned as 0.766141 (the exact value is 0.7861514) and hence $1 / \varphi$ was reckoned as 0.61801767

If $1 / 0$ was reckoned as 0.6180 , the height would be 146,517.274 millimetors, which would imply $\pi=3.141985$. Therelore, I would conclude that the height possibly was reckoned as $27915 / 28$ cublts $=279.53714$ cubits $=$ 146.518.169 milimeters According to Petrie the slope of the north face is $51^{\circ} 50^{\prime \prime} 10^{\circ \prime} \pm 1^{\prime} 05^{\prime \prime}$. If tho north face had been calculated by the exact value of φ. the slope would have been $51^{\circ} 49^{\prime} 38^{\circ}$. This angle can be easily calculated ecause if the meridlan triangle of the north side is calculated by 0 , the secant and the tangent of the angle of the slopo must be equal to oach other, that is, must bo equal to $V \bar{V}$. If the west side had been calculated ty the exact value of π. it would have had a slope $51^{\circ} 51^{\circ} 14^{*}$.
4 Most interpreters agree that the Pyramld had a
eight of 280 cublts Even Borchardt, who is so opposed to height of 280 cublts Even Borchardt, who is so opposed to
tho idoa thal Egyptians had any knowledge of mathomatics that he calis Herodotus an "idiot" for having said that the Pyramid was calcutated by φ, agrees that the Pyramld had a haight of 280 cubits.

In general one could establish a consensus of the responsibie Interpreters to the effect that the merldian Iriangie of the Pyramld was the following:

Halght: 280 cublls Base: 220 cubits Apolhem: 356 cublts

In my opinion, this triangle was purely the statting point of the calculations. It was chosen in order to indicate ine retalion π and the telation φ. Since $22 / 28$ is the value of $\pi / 4$ used in practical reckonings $(\pi=31 / 7)$, and
$356 / 220=89 / 55=1.6181818$ is an approximation to the value of φ according to the initial terms of the Fibonacc series. But the Initlal meridlan trlangle was modified fo several reasons, the first one being that it is impossible to construct a right triangle with sides 280, 220, and 356 since we have:

$2802=76,400$ $2202=48,400$ $356=126.738$

We have seen that the basic length of the sides was roduced to $4391 / 2$ cubits (somiside of $2193 / 4$).

In my opinion, the height of 280 cubits was ohosen in order to indicate the polar flattening of the earth The Egyptlans calculated the polar Hattening as $8 / 280$, but this was a round figure adopted on the assumption that the order of the cosmos must be septenary.

Information about the Egyptian estimate of the size and shape of the earth is provided by Chapter LXIV of the Book of the Dead. This chapter was the most imponant one: reciting II was considered almost as effective as reciting the entire book. In one of the papyri of the Book of the Dead there is an annotation to the elfecl that this chapter was found in the shrine of the solar boat during the reign of Udimu, the fourth or fifth Pharaoh of the First Dynasty. Chapter LXIV states that the splrits of the Nether World (that is. all that is below the surface of the earth) are $4,601.200$ and that each is 12 cubits high. The occurrence of the factor 12 indicates that it is a matter of geographic cubits. Now, $12 \times 4,601,200$ cubits $=55,214,000$ cubits $=$ 138,036 geographic sladia, is equal to two diameters of the earth in order to explaln the ligute of 138.036 sladia. one must assume that the Egyptlans reckoned as it the polar must assume that the Egyptlans reckoned as it the pola
flattening occurs only in the northern hemisphere. On the basis of this assumption the figure of 138,036 stadia can be decomposed into the following four earth radii:
34.538 sladia $=6.378,388$ meters $=$ equatorial radius

34.538 stada 34.538 stada

34.422 stada $=6.356 .988$ melers $=$ Dclar iadius
$\stackrel{9}{38,036 s t a d i a}$
These figures imply that the flattening of the North Pote is $116,34,538=1: 297.74$.

With exireme economy of numerical expression the Egypilans had arrived at values which are as good as the Egypilans had arrived at values which are as good as the happens to coincide to the meter with that catculated by Hayford. But Hayford calculated the polar flattening as $1 / 297$. Helmett, however. set the polar flattening at $1 / 298.3$

Search inside
a figuro which has been adopted in several of the recent surveys and colculations of the size of the earth which aim at achieving the maximum possible exaciness.

At the begisning of the dynastic period the above mentioned ligures were revisen in order 10 make them ill into the soptenary system of measures and cosmic order The polar flattening was sot at $1 / 280$. This was achieved by decreasing stightly the polat radius and Increasing slightly decreasing stighly the polar radius and increasing slighty as 217,000 geographic stadia $=40,074$,999 meters. was calculatod by a sladium ($1 / 110$ of minute) of 35 A royal cubits which made It $40.078,476$ meters. It is conceivable that the data mentioned in the Book of the Dead was reinterpreted as follows:
34.540 qeographle stacla $=6,378.758$ meiers $=$ equatorlat radlus 34,540 geographic slactia
31,540 geographic sisdia
34.416 aeograplicic stadia $=6,355$, 950 melers polar iadius 138.036 geographlc stadia

The figure of $1 / 280$ for the polar flattening was adopted because it fits into septenary reckoning also in a second and more subtte way. If the polar flattening is $1 / 280$, the arc of mertilan is 0.7840 of equatorlal diameter. Now, $0.784=$ $280^{*} / 100,000=78,400 / 100,000$. This is the reason why Hercolotus put omphasis on the fact that the surface of each face of the Pyramid is 78,400 square cubits, being equal to the souare of the height, which is 280 cubits. However, the figures reported by Herodotus apply only to the Initial plan of the Pyramid. When the figures were further refined the heighi was calculated as 279.53 cubits. If the polar fiattening is $1 / 297.74$, the are of meridian is 0.7408 of equatorial diameter. This means that an arc of merldian is $0.78408 / 1 / 4 \pi=279.53 / 280$ of a rournh of equator. Hence the height of the Pyramid in the final plan indicated the correct figure for the polar flattening.
vili. ADDITIONAL REMARKS ON THE DIMENSIONS Of the great pyfrmid

1. Herodotus provides oniy two pleces of Information about the dimensions of the Great Pyramid. He states inat the surface of each face is equal to the square of the height, which means that the Pyramid was calculated by the Goldon Secilon (by the faclot p). He states also that this surface of each face is equal to 8 Egyptlan acres. The Egyptlan acre is a square with a side of 1000 royal cubits (2747 square meters). The Egyptian ocre, meters). The Ela imilar to
height of 280 royal cubils. He reckoned by half acres, which as 1 have explalned earller, were taken to have sides of 70 cubits if the Pyramid has a height of 280 cubits, the square of tho hoight is 16 half acres (78.400 square cubits). If Herodotus assumed a side of 440 cubits, in order to have this surface the faces should have had an apothem of 356.4 cublis: out if he assumed a slde of $4391 / 2$ cublis the apothem should have been 356.8 cubits. But Herocotus' figure for the surface of the faces was not intended to be oxact.

The Roman geographer Pomoonlus Mela (1.9) para phrases Herodolus in these terms: quatuor fere soli jugera sua sede occupat, totidem in allitudinem erigitur, "it occupies aimosi four acres with its base, and il rises as much in height." Mela expresses himsell awkwardly, but the main point is clear. In order to make the reckoning more easily comprehensible he counts by double acres which have sides of 140 cublis. If the Pyramid had a height of 280 cubits, il would be Immedlately clear that the square of the height is 4 (double) acres. But Mela states that the surface of the faces and the square of the height is almost 14 acres. It was a current practice in all ancient cultures to double units of measure. while continuing to reter to them by the name of the simple unit Mela erroneously speaks of the surface of the base, whereas it is a matter of tho surface of tho laces. The error probably originated through an inept iranslation from a Greek author who used the technical term epipolès. which means "In elevation, by the lateral surface." but may also mean "in surlace." The same error occurs in Pliny. It is likely that the error in Iranslation originated with Varro, who almost certainty was the common source of Mela and Pliny. The polymath Varro, whollved In the firs century B.C.. proves Inept in mathematical matters, and Mela and Pliny were certainly no more adept in these matters. 8ut, the toxt of Mela, in spite of its shorlcomings, supports my contention that the height of 280 was merely an Initial flgure In the calcuiation of the Pyramld. a flgure which was reduced in the course of the development of the calculation.

I have analyzed all other ancient authors who provido information about the dimensions of the Pyramid. By a careful collation of thelr words and phrases, I have established that they all draw, directly or indirectly, on a single source. These authors wrote in Greek or in Latin during the first century of the Roman Empire. They are the historian Diodorus of SICrly (1,63), the geographer Sirabo (XVII, 1, 33), tho oncyclopodist Pliny the Eldor (XXVI, 12, 78-80), and the engineer Philon of Byzantium (Wonders of

Search inside
itse World. II). Their common source is the Greek grammarian Agatharchides of Cnldus, who tovaasd the end of the second century B.C. was guardian to one of the Ptolemy kings of Egypt. Quolstions from Agatharchides' lost work Indicate that he wrote extensively on the geography of Egypt, with particular emphasis on natural science.

The interesting feature of Agatharchides' report about he dimensions of the Pyramd is that he excludes the pyramidion from the reckoning. We know from the descriptlons of other pyramids that the very lop of the structure was a small pyramid of metal, usually a precious metal such as gold or silver, which shined in the sun. From Agatharchides' account one gathers that the Great Pyramid or Giza was lopped by such a pyramidion, "small pyramid," as the Grooks called it . In the case of this Pyramid, at least, the pyramidion was used to achieve a mathematical result.

In ancient mathematics extensive recourse was made lo mathematical procedure which we no longer use, but which was extremely convenient. If the square root of a numbor cannot be expressed by an integer, the number is conceived as the product of Iwo integers of which the second is the same as the first. but Increased or decreased by a small quantity, usually the unlt. Similarly, it the cubic root of a number cannot be expressed by an Intogar, the number is conceived as a cube in which one side is longer or shorter tian the others. For instance, the number 8400 is conceived as a cube with sides 20, 20, and 21. This procedure is called basi in Sumerian. I have established that the calculation by what I call near-squares and nearcubes was common not only in theoretical mathematics but also in architecture, land surveying. and the construction of measuring vessels.

The procedure just described was applied in geometry by removing a small part of a figure. For instance, a problem of geomeiry could be solved by cutting off a slice from a side of a parallelogram. Most commonly the procedure was applied by cutting off a corner of a triangle; this is the reason why tho part cut off is called groomon in Greak. Mos usually gnōmön means "pointer of a dial" in Greek; hence, the term applies pertectly in our case in which the top of the Pyramtd was concelved as cut off in the computation presented by Agatharchides

An essential point of Agatharchides' account is that he describes the Pyramid os having an apothem which measures a stadium up to the pyramidion and having a side which measures $11 / 4$ stadia. The term stadium has a double meaning: it refers to $\mathrm{s} / 10$ minute of degree and it reters to a speoific unit of measurement. Agatharchides uses the term in both senses.

I have already indicated that the base of the Pyremid has length of $11 / 4$ times 351.6 royal cublis, which for the Egyplians was the length of the stadium ($1 / 10$ minute) of the degree of latilude at the equator. From the authors who drew on Agatharchides we galher that he said that the perimeter is 5 stadia, that is, $1 / 2$ minute of degrec.

One would have expected the perimeter of the Pyramid o have been calculated by the tength of the degree of longltude al the equator, but the builders instead calculated by the degree of latitude, because thoir concern was the length of the orc of mcridian. From Agatharchides we learn hat the apothem up to the pyramidion had a length of a stadlum that is. $1 / 10$ of a minute of degree. This permils us to understand what was the specifio function of the pyramidion. Since the degrees of latitude increase in length from the equator to the pole, the apothem of the Pytamid up to the pyramidion gave the length of the shortest degree of latitude, the degree at the equator. The pyramidion may of latinude, the degree at the equator. The pyramidion may from the equator to the pole. According to Egyptian reckonings. the stadium of the degree of tattude at the equator is 3516 royal cublis and inereases to a length which at the pole the Egyptians assumed to be 355 cubits in practical reckonings and slightly more than 355 cubits in exact reckoning. The apothem of the full Pyramid came to be something less than 356 cubits.

Agatharchides interprets the dimensions of the Pyramid also by taking the word stadium as referring to the stadium of 600 geographic feet. Tho geographic stadium was the unit most commonly used by the ancients in calculating eographic distances A stadium was 600 geographic teet, and 600 stadia made a degree. This calculation was correct for the degree of latitude at the middle latitude ol Egypt, for the satitude of the caplral bullt by the Pharaoh Akhenaten. According to Agatharchides the side of the Pyramid is $11 / 4$ tadia or 750 feet (230,847 millimeters), and the apothem is a stadium or 600 feel. The side of the base of the pyramidion is 9 feet. The figures indicate that Agatharchides was not concerned with presenting the actual dimensions of the Pyramid, but in Illustrating the mathematical principles according to which the Pyramid had been conceived.

The figures quoted from the lext of Agatharchides by latet authors suggest that he began his analysis of the meridian triangle of the Pyramid by presenting a triangle with the following dimensions:

This approach gives excellent values of φ and π. $\begin{array}{rl}d & =610 / 377\end{array}=1.0180371$ (exactly $q=1.6180339887$) $)$ $14=377 / 480=078541866$
$\pi=3.14188$
$\pi=3.14180$
It is impossible to construct a rlght triangle with aides 480,377 , and 610 . since we have.

$480=230.400$
 $487=230.400$ $377=147.129$
 -

But the calculation I mention is tess oft the mark than the calculation by the triangle 280, 220, and 356, which was the one with which the builders of the Pyramid actually began.

Maving statted with the mentioned meridian triangle, Agatharchides cut ofl the side so as to reduce the apothem to 600 feet and the base to 371 feet, excluding the part of the base below the half of tho pyramidion.

Since Pliny in quoting Agatharchides does not give tho length of a side of the pyramidion (which another author describes as being 9 feet), but the combined lengit of two sides, I have concluded that the pyramidion had an average side of 9 feet, bul had different lengths of differenl faces.

I presume that Agatharchides presented two different meridian sections of the Pyramid, one calculated by the factor φ and one calculated by the lactor π.

$$
\mathrm{By}_{4}
$$

By F:

$1 / Q=0.61806368$

$\pi=3.1420050$

The two possible meridian sections were combined so as 10 obtain two laces catculated by π and iwo faces calculated by φ. The Pyramid seen from above would have had the following dimensions:

Like Herodolus, Agalharchides was not concerned with reporting the exact dimensions of the Pyramid, but with presenting the generat principles of the mathematics of the Pyramid. This was the point which was of the greatest nterest to a Greek audionco.

I do not pretend to have reconstructed the authentic reckoning of Agatharchides, bul I feel confident that I have understood the general drift of nis Imerpretation it seems to me that he intended to improve on the presentation of Herodotus, who had only mentioned the factor φ_{1} by stressing the roles both of the factor φ and of the factor in. Agatharchides wanted also to emphasize that the dimensions of the Pyramid were related to the length of the degree of latitude. This was a point of essential importance which had not been mentioned at all by Herodolus.
2. The Egyotians ascribed the Invention of the att of ouldaing with stone to imhotep, vizier and archisect of King Zoser, who reigned about fifty years before the building of the Great Pyramid. And In lact there has not been found any important building made only of stone blocks which dates betore the reign of Zoser. The Egyptiansdescr:bed Imhotep as a sort of Leonardo da Vinci of Egypi, mathematician scientist, ongineor, and architoct. Not many years atter his scientist, ongincor, and architoct. Not many years atter his
death the was made into a demigod, son of Ptah, the god of crattsmen and tectinicians. Up to recently litere were Egypiologists who Insisted that Imhotep was a legendaty figure. One argument was that there is no other instance in Egyptian history of an ordinary person having bene divinized. But more basic was the argument Ihat 8 person with all the gilts ascribed to Imhotep coutd not have existed in the Old Kingdom. It is only in the last lew years that it has been delinitety accepted that imhotep was a real person, since it has been possible to gather some specific details of Information even about his physical appearance. His genius was recognized even during nis llfe. since King Zoser

Search inside
covered him with all sorts of honors, although he was a man of humble origin.

But, even though II is now granted that the Egyplians were not llving in dreams when they Idolized the genilus of Imhotep. Egyp:ologists have talied to investigate what were the scientific achievements of imhotep other than that he was the first one to have designed a pyramid, the step pyramid of Saqqara. This pyramid is just one element in an enormous group ol bulldings which is known as Zoser's Complex. Thls group of bulldings is not enty so exlensive but also so elaborate that nothing of the sort was produced aga in In the long history of Egypl. In splte of thls, not one Egyptologist has ifled to Investigate this monument and other constructions directed by Imhotep in terms of what the Egyptians said were his talents. Scholars are wllling to grant that a man with the name of Imhotep walked on the land in Egypt, but they are not yet willing to grant that Egypt couid have produced a mind like his.

The French archeologist Jean Philippe Lauer has dedlcated many yeas to the siudy of Zoser's Complex. He is a highty competent archeologist and essentiasly factual and realistic. Actually ho has been criticized for insisting too much on technical problems of architecture. For Instance, Ihe German Egyptologls! Herbelt Ricke has disputed point by point Lauer's Interpretation of the monuments of Zoset's Complex, claiming that the architecture must be understood in terms of the conflict between the psychological attitudes of nomadic hunters and that of sedentary agriculturists. Bul Lauer has tearned how far the academic community is willing 10 oo in tolerating ratlonal thought in the area ot anclent studies. In 1984 he published a shott paper in which he tried to deal with the geometry of the pyramids and enlisted the cooperation of a prolessional mathematician, Paul Montel But. tour years later, when he published the book. Le Plobleme des pyramides, he backiracked and dismissed any mathematical Interpretations.

In reporting about Zoser's Complex, Lauer keeps slumbling into mathematical problems, but ignores them. For instance, he found that the wall that surrounds the eititre Comptox forms a rectangle 544.90 by 277.60 meters. He concludes that it is a matter of a dimension of 1040 by 530 cubits. I would understand that the intended dimensions were 545,114 by 277,799 millimeters, according to the cubit ot 524.1483 millimelers Lauer is surpised at meeting wilh the ligure of 1040 cubits, whereas he would expect 1000 cubits, and expleina it away by essigning arbltrarily 40 cubits to the thickness of the walls. But in another part ol his work he points out that the same proportions occut in some First Dynasty royal tombs which have dimensions of 54 by 27
meters. It may be enough to point out here that the dimenaions of the enclosuro of Zoser's Complex aro based on the near-square with sides 52 and 53 , a mathematical ently of which I have spoken earllet. It Is a matter of two near-squares with sldes of 520 and 530 royal cublis, it is relevant to what tollows that such a neer-square has a diagonal of 742.49579 , which is 6 times 123.749 .

Laver notices in Zoser's Complex four Instances of the occurrence in imporant positions of the anomalous dimensions of 123 cubits, whereas in the Complex dimensions are generatly decimai multiples of the cubll. One of the most impressive remains of the Complex, the monumental entrance gallery, hae a length of 123 cubits. Lauer suggests that the Egypilans may have been fascInated by a magic number composed by the first Ihree Integers. This Is a way of shunling off a problem by appealing to that undefinable entity called magic and by implying, at tho same lime, that the called magic and by implying, at tho same lime, that the irlvolous in matters of mathematics
Lauer did not reallze that the number 123 is an expression in terms of integers of the number $2^{\prime} \varphi=\sqrt{5}-1=1.236068$. In nis book on the pyramids Lauer had denled the occurrence of the factor φ in their architecture.

It is a matter of the right triangle with an angle of 36° which the Egyptians called mr. I have suggested that the name To-Mera, which the Egyptians gave to their country, was a reference to this triangle. It a right trlangle has an angle of 36° and the longer side is 100 , the hypoienuse is $2 / \varphi 100=$ 123.6068 , the other side being 72.6542

Since I have argued that the Great Pyramid was calculated both by the tactor p and by the facior $\pi, 1$ might point out here that there is a close relation between these two numbers, which goes beyond the fact that there is a numencal similarity between $\pi / 4=0.7853981$ and $\sqrt{\pi / \varphi}=$ 0.7861514 . The number φ was used to oblain the value of oirculer functions, since we have

$$
\begin{aligned}
& \sin 18^{\circ}=\cos \quad 72^{\circ}=1 / 2 \varphi \\
& \sin 54^{\circ}=\cos 36^{\circ}=42 \\
& \sec 38^{\circ}=\operatorname{cosec} 54^{\circ}=2 / 0 \\
& \operatorname{soc} 72^{\circ}=\cos 0 \operatorname{coc} 18^{\circ}=2 p
\end{aligned}
$$

In practical reckonings the right triangle wilh an angle of 36° was taken as a triangle with a side of 100 and a hypotenuse ol 123 . The side opposite the angle of 36° was taken as being 72; this permits us to calcuiate in terms of half degrees all the trigonometric functions of the angles between 0° and 36° Since the angle of 36° Is $2 / 5$ of a right angle and $1 / 10$ ot a fuil circle, one can calculate from the mentioned triangle the trigonometric functions for all angles.

Search inside

This is the reason why the triangle $m r$ was considered the basic constituent of the cosmic order.

In order to recognize the importance of the right triangle with an angle ol 36°, one may start by considering how much attention it received in Euclid's Eloments. It plays an even greeter role In early Greek mathematics. The symbol of the Pythagorean sect, the live-pointed star, was a combination of such triangles.

I have explained that the right triangle with a hypotenuse of 123 was a practical simplification of the triangle of 36° built according to the Golden Section. A further simplification was tho right triangle with sidos related as 3:4:5. If this triangle is enlarged to the scale of the one with hypotenuse of 123. it has sides 120, 100. and 75, Instead of 123, 100. and 72.

I need to point out that the Great Pyramid Incorporates the relation $4: 5$ in the proportion between the length of the apothem up to the pyramidion and the longth of the side. This provides a point of transition to an analysis of the dimensions of the Second Pyramid.

The Great Pyramid tried to compress a great number of mathematical relations, whereas the Second Pyramid limited itself to embodying the triangle mr.

The basic ldea of the Great Pyramld was that It should be a representation of the northern hemisphere, a hemisphere projected on flat surlaces, as is done in mapmaking. This was the principle according to which was built the ziggurat of Babylon, the blblical Tower of Babel, and according to which were bulit the earlier pyramids. The Great Pyramid was a projection on four triangular surfaces. The apex represented the pole and the perimeter represented the oquator. This is the reason why the perimeter is in relation 2π with the height. The Great Pyramid represents the northern hemisphere in a scale 1:43.200; this scate was chosen because there are 86.400 seconds in 24 hours. But then the bullders became concernod with the probtem of indicating the ratio of polar Hattening of the earlh and the length of the degrees of tatitude which depends on the ratlo of this llattening. Next, they incorporated into the Pyramid the factor o as the key to the structure of the cosmos. The Second Pyramid. on the contrary. Ilmits itsell to embodying the tiangle $m r$, which is based on the number φ, at least as far as I have been able to establish up to the present moment.

According to Perte's survey the sides of the Second Pyramid have the following lengths:

Wost: 215.278 millimolers
North: 215.188 millimelers
East: 215,269 millimeters
East: 25,269 millimeters

The royal cubll of this pyramid is that of 525 millimotors. The basic length of tho sides is 410 cubits $=\mathbf{2 1 5 , 2 5 0}$ millimeters.

The meridian triangle of the pyramid is a irtangle with proportions $3: 4: 5$. The base is 205 cubits, the height is $4 / 3 \times 205=273.33$ cubits, and the apothem is $6 / 3 \times 205$ cubits $=341.66$ cubits.

Reckoning by third of cubils, we fiave.

> Base: 123×5 Height: 104×5 Apothom: 205×5

Possibly the pyramid was calculatod by a rod ol $5 / 3$ of a cubit, which is called nbyw (nebiu In Coptic).

It is clear that this pyramid was inlended to Incorporate the number 123 as a round figure for $2 / \varphi$.

The slope of the pyramid is the same as the angle of problems $67-69$ of the Rhind Papyrus. Tho tangent $164 / 123=$ 1.3333 corresponds to a slope $53^{\circ} 07^{\prime} 48^{\mu}$. The angle ol the apothem with the height is $38^{\circ} 52^{\prime} 12^{\prime \prime}$. This angle was interided to ve an approximation to the periect angle 36°.

The geometry of the Second Pyramid could be oonsidered crude in relation to the sophisticated one of the Great Pyramid, but it emphasizes the importance that the Egyptlans attached to the triangle mr .
3. Petrle's survey of the Second Pyramid hetps in ciaritying the problem of tho orientation of the sides of the Great Pyramid.

Petrie reported that the four sides of the Second Pyramid are oriented as follows:

```
West sidfo: \(0^{\circ} 00^{\prime} 21^{\prime \prime}\) west of true north
Nonh sido: \(0^{\circ} 05^{\prime} 31^{\prime \prime}\) north of true eest East sfide \(0^{\circ} 05^{\circ} 13^{\prime \prime}\) werst of thue north South sido. \(0^{\circ} 0^{\circ} 40^{\prime \prime \prime}\) north of true east
```

Petrie warns that the trlangulation of Egypt existing at his time did not permit him to establish the direction of north with absolute certainty. Hence, his figures can be aken only as an indication of the angle of the sides in relatlon to each other

Petrie's figures prove that the deviation from the right angle in three of the lour angles of the Great Pyramid was intentional and not the result ot mistakes in construction, as claimed by protossional archoologists. The north side of the Second Pyramid is shortened in relation to the south side. as It occurs also in the Great Pyramid. But in the Second Pyramid the shortening of tho north side and the lengthening of the south side was achieved by constructing a more regular figure. The base of the Second Pyramid has the shape

Search inside
of e trapeze or a trapezoid. The north and south sides were drawn parallel to each other. Posslbly the west side was intended to be at an angle of one minute with the nortt-south axis, and the west side was intended to be at an angle of half a minute with tho north-south axis.

In any case the approximate findings of Petrie indicate that. It one proceeded to a new survey of the Second Pyramid and then surveyed the orlentation of the sldes of other pyramids and possibly of other major constructions of the Old Kingdom, one could recognize a pattern on the basis of which it could be established what was the purpose in making the angles of pyramids and possibly of other malor constructions difterent from a right angle. It is impossible to formulate a reliable explanation for the differences among the angles of the base of the Great Pyramid without establishIng what was the general practice in establishing the angles of the base of pyramids.

I have come across the same dilficulty in dealing with the dimensions of Greek temples. I have ascertained that the four angles of the Parthenon were intended to deviate slightly from a right angle. Further, in the case of the Parthenon the north side is shoner than the south side, as in the case of the two major pyramids of Giza. But it is impossible to advance hypotheses in order to explain the differences among the angles of the Parthenon, as long as the angles of other temples are not surveyed so as to make possible the identificatlon of a regular pattern.

There is one further problem to be considered in relation to the orientation of the faces of the Great Pyramid. The west face, which In my opinion was drawn first and is the basic face, is not oriented to the north, but is oriented $2^{\prime} 30^{\circ}$ west of true north.

This deviation from orientation to the north is the result of the precession of the cquinoxes.

From cuneiform texts one gathers that in Mesopotamia there was a distinction of roles between the mathematician who tormulated the general plan of a building and the architect who executed tho plan. Whothor this distinotion existed in Egypt or not, it can bo assumed that In the constructlon of a pyramid the firsl step was the drawing of a mathematical plan. This plan would include the allonment of the slars to be observed in establishing the direction of the north. If my interpretation of Egyptian sky charts is corsect, the line that indicates the north used to be marked so as to pass through the cetestial pole and through the pole of tho ecliptic.

In any case, it appears that there was drawn a plan of the Great Pyramid which Included the caicuiation of the stars
to be observed in order to oblain the direction of the north. After this plan was drawn, the ground of the Pyramid hed to be cleared in order to proceed to the ceremony called "stretching of the cord.' which for the Egyptlaris was the equivalent of our laying of the lirst stone This ceremony had the purpose of establishing the direclion of true nonth and, as the Egyptians saw it, suspending the building from the sky by tying the building with an Imaginary string to the axis of rotation of the vault ot heaven.

If there had passed exactly three yoars from the drawing of the plan to the ceremony of the "stretching of the cord," the clustering of stars, which gave the exact north of the moment of the drawing of the plan, would give an orientation $2^{2} 30^{\prime \prime}$ west of north, because of the precession of the equinoxes, which displaces the star taken as the polar star In practicat calculatons to the west at a rate of about $5 \sigma^{\prime}$ a year.

The Socond Pyramid too is oriontod west of true north, but unfortunately Petrie's figures for the orientation of this pyramid are not exact, as he himself warns.

The question to be asked is whether the incorporation of the rate of the precession of the equinoxes into the dimensions of the Great Pyramid and of the Second Pyramid was accidental or intended. I am Incllned in favor of the second atternative, since in the case of the Great Pyramid the angle corsesponds exactly to three years in the preces sion of the equinoxes. In their book Hamlet's Mill de Santiltana and Dechend have used mythological and Iconographic evidence In order 10 prove that als ancient cullures of the world ware deeply preoccupled with the cultures of the world ware deeply preoccupled with the phenomenon of the precession of tho equinoxes. They intended to prove that the movement by which the celest pole In about 25,920 years (Platonic year) makes a full circle around a point called the pole of the ectlplic was concerved as the basic movement in the lite of the universe. This cyclo detorminod all other movements, including biological developments, and determined the length of human life fraken as equal to 72 years, or the time that it lakes the celestial pole to move a degree) as welt as historicat events. The authors of Ham/et's Mill have kept their conclusions vague, probably in the hope that thereby their findings would be less readlly attacked by the academy. They open their book with the statement: "This is meant to be only an essay. It is a first reconnaissance of a realm well-nigh unexplored and unchartod." This is a mosi gentle way for a professor of the history of scienee at the zenith of his career to present a thesis which. If accepted, should have the impact of a Copemican revolution on current conceptions
of the development of human culturo. Since tho essence of my method is quantitative, I cannot induige in the luxury of such ilngulstic nicetles. I have collected a mass of numerical evidence which shows that the inhabliants of the ancient world were acquainted with the rate of the precession of the oquinoxes and attached a major significance to it. But in order to deal with this evidence, I would have 10 open an entirely new topic. I beg the Induigence of the reader in asking him 10 remain satisfied for the moment with the mere hint that there is yel another lesson about the level of Egypllan sclence to be drawn from the stark nakedness of the Great Pyramid.

GLOSSARY OF NAMES AND TERMS

Abd-al-LatIf (1179-1231)

Abdullah AI Mamun (d.833)

Agathorehides of Cnidus

Akhnaten (1388-1358 B.C.)

Akhtaten (Resting point
of Aten)

All Gabti (1830-19?)

Alvarez, Luis Waller
(1911-)

Arab historlan who taught medticine in Baghdad. Aullior of one of the early Arab historles of Egypt. Relation de l'Egyfto. In 1220 ho explored the Grest pyramid, reporting that he came cut of it "more dead than alive."
Caliph of Baghdad, son of Harun al-Raskild. Palronized literature and science: built ant astronomical observatory outside Baghdad; ordered a degree of lalitude to be measured across the plat of Paimyia. Is reputed to have broken finto the Greal Pyramid in 820 in search of treesures, but to have come away emply handod allor opaning the way to tho King's Chambor

Grock historion and geographor who lived in tho timo of Ptolemy Phllometor (18i-146 8 C.) and dealt with the geography of the Near East

Ravolutionary pharaoh of the Elghteenth Dynasty who enenged Amon at Thebes. He bult a new capilal, Akhtaten, between Thebes and Memphis near the site of Tell el-Amarna, Of his religious reform, which was monotheistic and recognlzed tho sun as the symbol of llving energy, Patre remarked: "no such grand theology had ever appeared in the world before."

Capital suill by the young pharaoh Aknnaten at Ine predynastic goodetic center of EgyDt, haliway between the Tropic and the Medilerranean coast, near the sile called Tell el-Amama. The clity, which was decoraled with splendid templos and palaces, was dostroyed ofter Akhnaton's dealh.

Arab guide, sometimes relerred to as Alec Dobree, who was an assislant to Howard-Vyse, Plazzl Smyth. Sir Ftinders Pettle and noses B. Corsworth over a perlod ol nearly sevenly years neipling them exolore and measure the Great Pyramid.

Nuclear physicist. Professor of physhes at Lawience Radiation Loboralory, Berkeley, Celifomia, Nobel Prize winner for physics in 1968. Doveloper of radar. Helpad dovolop A-bomb and flaw in $8-2 \theta$ observel follawing the plane that bombed Hiroshima One at Science. Aulhor of several scientific articles. Adapled spaik chamber to X-ray the pyramlds with cosmic rays.
Studied Egypilan and Coptic under Maspero. Did much excavaling tut was ciiltcized by Petrie and Maspero for unscientific mathods. Protcsur of hiziory or rigions in toclo des haule on ancient Egyptian history and science.
Four Pharaohs of the Twelth Dymasty, the first of which reloned Four Pharaons of the Twell 1991 to 19.6 B.C.

A 000 who was related to the wind, promoted to an impetia divinity at the begloning of the Twelth Oynasty as Amon-Ra. Amon was considered the creator of other gods, and to have had no boglnning and no end.
From the Third to Sixth dynastlos, varlously ostimated, but ap proximately 2780 to 2280 日.C There is little historleal data on this perico. most of the relevant papyti having disappeared. Under the Influence of KIng Zoser and his archlitect Imiotep. Orlck struclures gave way to stone. The political center was al Memphis
365 dayg, 6 hours, 13 minutes, 18 saconda. Tho time it takes tho earth to etetum in its elliplical orbit to the point nearest the sin --aboul $4 / 3 / 4$ minutes tomper than the sidereal year

The distance from the apex down one lace to the center of θ base side.
Hindu astronomor and malhematician, author of Alyabhatiya which gave the rules of methematics as known in his lime. Most of his work deals with astronomy and spherical trigonometry, Gave a value for $₹$ of $3177 / 1250$, or 3.1616 . Taught that the daily rolatton of the heavens was an appearance ove to the earn's rotation on lis axis.
God of the Solar orb, raised to a Dilme positlon by Akhnaten. Represented by e golden dlsc raclating rays that end in hands. tWas considored e universal doily who could have hold sway over a univoral ompiro.
Anglo of are around tho horizon, or angular dlstince of an observed point from geographic noth (or other fiked point).
Austratian enginear who made a study of the pyramids in 1882 which he wrote up in "The Solution of the Pyramla Probiem: or Pyram d Discoveries wilh a New Theory as to Thelt Anclent Use."
President of Columbia Unlvorsity (1864) and prosidont of the Amorican Aszociation for the Advancomont of Scionce. An suthority an waights and measures, he took issue with the conclustons about the Pyramid drawn by Piazzl Smyth and other pyramidologisis.
Town In lower Egypt which was the caplial of Egypt in prodynastic timos. In Plolemale times it was the oapital of a nome and was known to tho Romans as Hermopolis Paiva in Steceninir's limit of Egypt. 7 t/2" nortit ol the Troptc.
Itallan exptorar and adver furer. A large and powerfur man, six teet seven inches, wito exthibited himself in leats of strengith. He come to Egypt to demonatrato a hydrautic maotione ho had Inventod, but when the machine proved unsuccessful he turned to archeology and discovered saveral tombs as well as the entrance to Kephren's pyramid. A narrative of his exploits was published in 1820

French plyysicist, professor of mathematices at Eoauvois and protessor of physice at tho Colldgo de France A prolilic writer, he covered a wide fetd of physical science, becoming a membe of the Academy of Sciences and a commander of the Leglon Honnear. ho was especially indesied in ithe astionomy of ancient Egyptions.

The Book of the Doad
Borchardt. Ludwig (1863-1938)

Bouchard, Pierre-FrançoisXavler. Captain (1772-1832)

Brugsch, (Pasha) Kart H 1827-1884)

Brunés. Ton

Budge. Sir Emest Altrad Wallis (1857-1934)

Eurattinl. Tito Livio (16?-1882)

Cabala

Camphell Patrick Cotone (1779-1857)

Cardano, Girolamo (1501-1576)
cerdinat polnts of the compass
callouche
Cayco, Edgar (1877-1945)

Cassint Gian Domentco (1625-1712)

An Egyptian coliection of hermetic inscriptions and papyri purportedly providing funerary and rliuat toxis.
Gorman Egyptologist Studled Egyptology at Bertin University under Protessor Johan Erman Worked at Philae in Egypt in 1895, and conctucted many excavations in subsequent sears. Inaugurated the great Catatogue of Calro Museum with Protessor Gaston Maspero. Founded Garman Instiule of Archeology in C
bibllography of his many writings was iseued in 1933.
Enginser working on Fort Julion near Rosetta, 70 kltomotors east of Alexandrla in 1799 found the Rosetta Stone as part of an oid wall.
Gorman Egyptoogist sont to Egypt by the Prussian government in 1853. Consul general in Ceiro, 1864, then prolessor of Egyptology at Göttingen, 1868. Director of School of Egyptology in cairo. Published a demotic grammar, a hieroglyphic dictionary and a mistory of Eoypt.
Danish consulting engineer and Freemason who devoted a score of yeors to resolving the prebtems of ancient geometry. In 1987 ho publishod a six-hundrod-pege two.volume book, The Socrots o Cut" for the Golden Section or phl relation
Orientalist. Keeper of Egyptian and Assytlan Antlquitles a the gritish Museum. Large pubilshed oulpui including popular and ipopular works. Compiled an Egyptian dictionary, and a full dition of The 8ook of the Deed.
Italian Iollower of Father Athanasius Kircher. Made several trips to used by Nawlon In his firt calculations for with Greaves which wer A Venotian by bisth, Burattini spent the better part of his matuilty in Poland. Author of works on standards of measure and the use ol pondulums.
A syelom of myetloal intorprotation of Scripturos practiced by certain medieval Jewish rabbis and certain Christian sects, on certain medioval Jewish rabbis and cerrain Chnstian sed
the assumption that Scriptures have an oscult meaning.
Army ofticar and dipiomal. Brilish consul general in Egypt, 1833 to 1840. Asseclate of Colonet Howard-Vyse in exploration of hove the King or for him one

Milanese doctor, methematician, ond astronomer, author of sovoral books His works in mathematlos includo tioatlses on arilhmotio geat pyram re rorpratec an earth commensurate unit ol measure of great exactness.
Noith, east, south, west
An oblong ilgure containing a Pharaot's mame
American claitvoyant whose thoussids of readings while in trance are flod In a foundation crealed In hlo memory at Virginia Beach, Virginio. Had many momories os a boing at tho timo of Allantis
French astronomer and geodesist of tratian ongin, founder of a French astronomer and geodesisl of tralian ongin, founder of a

Search inside

Caviglia, Giovanni Batista (1770-1845)
colestial oquator
Cnampolilon. Jear-Francols (1790-1832)
ctinkstone
cinometer
Cole, J. H.
corbeled masonry
Colsmath, Mases B.
(1859-1993)

Cottrell, Leonard (1913~
Davison, Nathaniel (?-1783)

Wes assisted by his son Ciacomo (1677-1758), who was assisted by his grandsen Cosero Fronceeco (1714-1784). His great grandson. Giacomo Domenleo, also a geodesist and astronomer, was bom in Paris in 1757 and died 1845.
Gertoose marines, owner and master of a trading vessel in the Mediterranvan based on Malle. Regarced himseif as a British subject. Explored the pyramids and the Great Sphinx, from whose baso he had groat quantities of sand removed. An ingenious excatator he discovered the outlet to the wall in the Great Pyramid and was in enarge of several hundied men excavating Ior Colonel Howard. Yyse until they quarreled. Caviglla was glven os e protége ol Lord Elgin.
A gieat circle produced by projeciling the earth's equator outward to the celestial sphere. At 16 at the Academy of Grenoble. Champollion presented a thrsis a degeneration of anclent Egyplion. The discovory of the Rosotta mpaltion to desipher the system of ancient Egyptian hlerogiyphs.
Compact graylsh rock which clinks tike metal when struck. A devlce to measure angle of slope.
British surveyor who carried out the oflicial aulvay of the Greas Pyramid for tho Egyplion Pyramid for tho Egyplian govemmeni 1925 His measurements Pyramid to within a lew millimeters, and put an end to years of coniroversy.
An arrangement of stones in which suecessive ooursos project beyond those below.
British tegissative enthusiast who wrote a series of pamphtets end books advocating a more rational almanac and demonstrating books advocating a more rational almanac and demonstrating erected as yearly atmanacs. Expatilated to Carada, where he died during World Wior II.
Brilish author of soveral books on Egyptian history and the pyramids Weiter and producer for radio and tetevision. Accompenied Edward Wortley Montagu on this travels in the
Eest. Arrived et the Great Pyramid In Juily of 1765 where he Eest. Arrived et the Greal Pytamid In July of 1765, where he which has since boen named for him. Was later British consul general at Aloters unlil his death in 1783.
Ten-day perlods marked by the passage of consteltations by which the Egyptiens divided the ycor Into thiny-six units. Angular dislance of a heavenly body north or south of the celestiat equator: analogous to tatllude on the stellar vault.
Ancient site of a piolemic tomple compound about 80 kiomotors north of Luxer on the cast bank of the Nile dodicated to Hathor and isis. Sevarat temples are believed to have been constructed on the site, attributed to Cheops. Pept I, and eartler monarchs. A zodlac on the celling of an upper room was removed and is now on display at the Louvie whore it has beon tho object of heoted ooniroveroy as to lts age and slgnilleanco.

Dencon. Baron Dominfaue Vivant (1747-1825)

Didouirl
Diadarus Sleulus
dhumal pattern
Dümichen, Johnnos
(1833-189s)
dynasiles

Ediu

Edwards I. E. S. (1909-)

Egyption myeterlos
Elephantine

Engetbach, Reginald (1880-1846)

oquinox

Fibonaccl, Leonardo Bigollo (1179-1250)

French anllquery and man of letters. Joined Napoleon's expedition and made mairy romsikable drawinga, Publishod Voyago dan la basse of la haute Egypte. 1802, which was an instanl suecers: transtated irto German and English Appainted director-generat of French Museums.
Fourth Dynasyy king who succooded Choope and preceded Kophion. Greak historian of the first century 8.C. Pubilshed a history, or Bibllotheca historica, the flist surviving book of whith deats with Egyps, to which he traveled about 60 B.C. In his geography he quotea verious losl sourcos.
The apparent movement of the stars in each rotallon of the earth. Gorman Egyplologist. Prolessor of Egyptology Strassbourg, 1872-1894 Sgveral publicalions. Traveled trequentiy to Egypt.
Thirly dynasties of Egyptian kings were listed by the pilest Manetho, from Menes to Plolemy II Philadelphus. Though erratlc, the list has formed the basis of Egyplian hitiory for aucceeding Esyptologists.
Ancient temple said to have been built during the Third Dynasty. Caplial city of second nome of UDDer Egypt on the west bank of the Nile, 100 mlles downstream from Thebes. Site of huge sandshene iemple dediceled to Horus, consiruetiod in Prolemaic limea, and lound half buried in the sand by Napoteon's forces during plan in Uppor Egypl
Bnish aulnor and Egypiologist Kegper of Egyptian Antiquities Bitish Museum since 1955. Visithop protessor at Brown Uni sily, 1953-1954.
Secrel knowledge of the cosmos posscased by initiates. Island in tho Nilo just north of the first cataract, which was used as a geodelic point known as the eity ot the elephants. capital of the first nome in Uppet Egypr on the border of Nubla. Oppesite Syene, the inodern Aswan.
Brilish engineer and Egyptofogist. Assisted Petrio in soveral digs. Appointed Chiel Inspector in Uppor Egypl for tho Sorvices des Antiquités. Keeper of Cairo Musoum 1931 Published work on obelisks and Egypilan masonry.
Time at whith the sun crosees the equetor in March ond Soptomber (vamal and sutumnall when day and night are of equal iength all over the aritt.
Hatlan mathematician, known as Leonardo da Pisa. His Liber Abacl (1202) was for years a standord work on algebra and arithmetic. In Prectica Goomotriae (1120) he organized and axlended matotial in geomolry and Irigonomalry. The Fibonacci sorine which he popularized in Eurnge in the initeenth cantur.
appears in the construction of the Great Pyramid several milappears in the A sequence of numbers in which each is the sum of the two
previous numbers-1, 2.3.5.8.13...The Ilmil of this series givas the exact yalue of p.
Brilish Egyptologist. Sorved thity youre in Service dee Antlquitts.
A vertical phllar whose shadow can be used to determine thine distance. and latiude.

Search inside

Division of a line (or geomelric Iguie) so that the proportion of the amalier asection to the larger le the zame as that of the largor. to the whole. For example. in the lhe below, the Goiden Soction is such that $A B: A C=A C: C B$ Malhemailcian and anilquarien, Son of Recior of Colemore in Hampshire. Educated at Baliol College. Oxford. Protessor of geomotry at Gresham Coliege, London. Travelod 10 the East to survey of the Great Pyramid during a trip to Egypt in 1639. Author ol Pyramidograpila. Appointed Savillan professor of Astionomy in relign of Charles'I, dismissed by Roundheads.
Tho animating spitit of the Nite, selfengendered; lord of the fish reprosented by an androgynova divinity crowned by a papyrus reed.
Egyptian goodeas, originally a peraonifloation of the aky. In the andera cult Hothor was considered the wife of Horus. The Greeks identified Hathor with Aphrodite.

Observation of a star as close as possible to the rising or setling of the sun.
The errangement of ine planets in orbits around the sun.
Northeast of Cairo on the edge of the desert: belleved to be the caplial of a prenistoric state. Clity of the Sun. embellished by a sories of kings from tie Third Dynasty on, it was the seat of lempt contor of theologleal loaming. It was roducod by Aloxander the Great in the fourth century B.C. One of the earliest obelisks was tound silli standing at Heliopolls.
Greek historian born in Asta Atinor. Visited Egypl towards the end ot the firsi Parslan domination. In his Mistory he devoted a book of the first Parslan domination. In nis Misiory he devoted a book many interesting end aecurste detalla of geography.
Astronomer, orily son of astronomer Sir IVilliam Herschel. Made a fellow of the Royal Sociery al tuonty-orie for a brilliant rrathe matical investigetion. Author of bootes on methomatics and century.
Prehistoric Egyptian sky god in the form of a falcon whose ayes were the sun and moon: also called ine "Behdette" in the form ol a wiged suth-disk. Later incuiporatad in the Osiris cycle. denifified by tho Greaks with Apollo.

Son ol ceneral Richard Vyse arid grandsori of Fleld Marshal Sir George Howard. Retired as Colonel of Second Lite Guards, 1828 Equerty to the king of Hanovar. Member of Perliamont Travalod the pyramids in 1837, employing Caviglia and nundreds of other workers. Discovered orighal casing stories and found chambers above Davison's. Author of Operations Carried on at tha Pyramid's of Gizeh in 1837.

Aslatic Kings who Invaded Egypl and formed the Fifteenth and Sixteenth dynastios. They were ohased out of Egypt by Ahmosis I Sixteenth dynasties. They were ohased
who foundod tho Elghteenth Dynasty.

Bn.Batula (ca. 1352)

Imholep (ca. 2800 B.C.)

Ka

Lepsius, Kari Richerd (1810-1884)

Lieder, Rudolph Theophilus (1797-1865)
indsay, (Lord) Alexander Willom Crawiord (ofte wards Ean ol Balcarra3) (1812-1880) Lockyor, SIr Joseph Norman (1836-1920)
uxor

Mandeville, Sir John (11. 1356)

Manetho

Marlette, (Pasha) Auguste (1821-1881)

Aaspero. Sir Gaston Camille Charies (1846-1916)

Sohammedan travolor. Said tho pyramida were bullt by Hermoe who is the same person as the biblical Enoch, to preserve the flood. Sakd dream occurred to Kho Surid that the Pyramid woutd oremed on the north sida so he deposited a sum of money equal to the expense of excavotion.
King Zosor'a architect, who is accredlled with the bullding of the stepped pyramid of Saqqara, of limestono. Ho to roputod to have been en author. diplomat, architect, and physscian
Metaphysical part of human beho. Lived onty on the essence of loods and was satistled with lacsimiles of food and mock bulldings which had only lacades.

German Egyptologist. Led Prussian expedillon to Egypt and Nubla. fublished sevenieen foilo voiunies of Denkmăler, mosily epigraphic matarial. Keeper of Egyptian collectlons of Berfin from 1873.
eriman missionary. Member of the Egyplian Soctety of Calro, B36. Collectod antiqulties.
Taveler and writer on ant. Hs Letters flom Egypl, etc., contaln particulars on Caviglia.

Engllish aalronomer, educoted on the continent of Europe; knighted for his work in spectroscopy and for Identilying helium in the sun. The author of several books on the astronomy of ancient eoples. na wers is oes solar and stellar obsorvatorles Egypilan temples were used as solar and stellar obsorvatories and almanacs.

Pert of the ancient sile of Thebes. A huge temple dedicated to he god Amon was built in the relgn of Amenholep III, and llered by succeeding Pharaohs, copocially by Rameses II, who
abuloua writer of troveier's guidebooks. Mosi of his data were avaitable in contemporary travel books and encyclopodlas. His
"voyages" are bellaved to be the work of a notaty In Belgium who never traveled abroad.

Egyplian priest and annalist in the relgn of Prolemy I who wrote Misiory of Egypt in Greek. Only tragments of which remain. His ivision of the kings of Egypt Into thirity dyriastles is sillt the basic structure underlying Egyptian history.
French Egyptologist. Travared to Egypt to collect Copilc manucriols and engaged in excavalions. Appointed Conseryalor at Egyplian Monumente by tho Khodive ond sottled in Egypt, where he made numerous finds which bocamo the nuclous of the Calio Museum.
French Egyplologist of lialian origin. Professor of Egyptology of College de France. Succeeded Mariette as director of tha Services des Antiquites. Wrote many sclentilic memoirs and a large number of popular books and raviens.
n oblong masonry structure with soping stdes and a fat top. sually above a desp plt.

Pepi
Porring, John Shae
(1813-1869)

Petric. Sir (William Matthew) Flindeis (1853-19\$2)
(phl) proportion
π (pi)
Plcard Jean (1820-1682)

First histoilc ruter of the First Dynasiy of ancient Eoypt, who is repuled to have united lhe southein end norlhern kingdoms and sotilod on a new captal on the Nile et the point of juncture al Memphis
The science of measurement.
A groat circle passing through the poics of the cetestial sphers
and the zenith of a fixed poinl on oarth.
Village in the Sudan on tile Nile norith of Khatioum which still thas ruins of teriples and pyramids.
Twelith to fourteenth dynasties, Ircm 2000 to 1600 B.C. Follows ist intermestiate period of chaollc condlions. The capital was at Thebes.
Prusslan officor of ttelian origin. Collected large quantities of antiquities. Published Afes solvenirs en Egypto.
Covers Elghteenth and Nineleenth dynastles, 1580-1350 and 1350-1200 B.C. The Hyksos invaders were ciushed and a milltary lato embarked on wide conquest from as fer es Cush to the Euphrates.
An instrument for measurino the heloht of the Nile
Ancient region, originally callod Cush, extonding from the Nite Valley near Aswan southward to tho modorn Khartoum, east to the Red Sea and west to the Libyan desert.
A tapered loursitted pilsar lsad for mieasuring shadow ienoth, usually inscribed with hieloglyphs proclaiming the achisvements of B Pharaoh.
Navel, or a central point on the surlace of the eaith
Two prazaons of the Sixth Dynasty.
British reivil engineer. Assistant to manager of public works tor British rivil engineor. Assistant to manzger of public works tor Khedive Mortammed all. Assisted Colonal Howard-Vyse in survey
and exploratlor of the pytamioss, in 1839 wrote and drew pletures and exploratlor of the pytamloss. in 1839 wrote and drew pletures
for a large folio. Thie Pyramids of Gizth from Acfual Survey and Measurement on the Spot.
Egyotologist. son of Wifilam Petrle, a civil engineer, and Anne, daughter ol Matthew Filnders, the exploter of Australia. Surveyed ancient British sites such es Stonehenge before making lirst saiantilic sunvay of Giza hill, Foundad tho Billish School of Archaeology in Egypt Responsible for many excavations and numerous books He is considered the lather of modern sclentilic archeology,
See Golden Section.
The corrslent by which the diameter of any circle may be multiplied to give ita circumference.
French astrotomer, noted for having made the lirst accurate modern measurement cl e degree of the earth's merition. His iguios onabled Newton to calculate the forec of gravitation. ccupiod tho chair of astronomy in the College de franco in
and observatory and the apoearance of Connatssance des temps. the list two volumes of which he authored.
Traveier snd divine, bichop of Ossory (1756-1765). Ascended the Nile as lar as Philae. The manuscripl journal of his travels is in ine British Museum

Proctor, Richard Anihony (1837-1888)

Ptah

Pylon
Pythagoras' thoorem

Each year as the spring euulnox the consteltation in the sky where the sun "ises due easl appears to have fallen back about twenty minulee. This phenomenon, or precossion, is causod by a slow toplike wobtlo of tho oarth on its axis which tokos obsul 26,00 years to cycle.
English astronomet and DoDular writer on sclentitic subjects. Founded the popular sclenulic magazine Knowtedge. Lectured in the United Slates end Austrelia. Author of many books on science
and astronomy, Dovoloped the Ihoory that the Groat Pyramid had and astronomy, Oovoloped the inoory ther the Groat Pyramid had whille still a truncated body at the level of the King's Chamber.
Calred Hephaistos by the Greeks Egyption god of the clly of Memphis, portrayed as a human figure in a light mummy wrapping. Memphis, portrayed as a human figure ha a light mummy wrapp:ing.
Considered the crestor of the world who produced visiblo phenomena through thought and the word. The protector of artlsans his high priest was the doyen of master craltsmen.
A double tower with rectangular base plerced by central doot to a teriple. The temple of Kamak had ten pylons.
The square of the hypotenuse of a right triangle is equat to the sum of tho squares of the other fuo sidgs.
The sun, later delfied. Creator of the wortd, was sald to be swallowed at night by Nut and recreated tresh each day. Ameilcan Egyptologist (Ph.D., Harvard University, 1893). Director of the Heasst expediliort to Egypt 1905-1907. Excavaled for Hervard Univeralty for many yoars in Egypl, partloularly ol Giza. Professor of Egyptology al Harvard (1914-1942). Curator of Egypllan Department, Boston Museum ol Fine Arts (1910-1942) Author of several Dooks on archeological excavations.
Scotllsh lawyer and travster. Owing to ill health was obtiged to winter in Egyp. Excavaled of Thebes ond bequeathed collection to Nalional Museum of Antiquitieas, Edinburgh, Noted for the
Malhematlcal Papyrus (BM10057-8), which was sold to the British Museum, and is considered ite oldest manuscriot dealing with Eqyplian mathematics.
The arc along the colestiel equator which separates a star from an arbilrary zero point; analogoue to longiludo around the an arbilrary
Right inangles with sides in such proportions as 3-4-5 of 2-v5-3 which were credited with magic or esthellic properties.

Sthuated 28 kttometers south of moders Carro. Just wast of Memphis and south of Giza. Ancient burial site named after Sokar, the god of measure. Greves date from the First Oynasty. Pyramids attributed to the Filth and Sixth dynastios Sita of tho architect Imhotep.
Phlosopher, archeologlst, and aulhor who spent twelye years at Luxor reconstructing the phlosophical and theological system of the ancient Egyplians. Born in Alsace, he was granied the aftor World War I in obtaining Indopondonce for the Ealtio Statos.
An instrumonl lor prociso moseuromont ol angular distancos to An instrumonitur procino moseun
determing latitude and longilude.

The lime il takes the earn to revoive around the sun so that an observer wlll see a given star reappear in the same postionabout 20 minutes longer than the solar year.
First king of the Fourth Dynasty. Fathor of Choops Buill bent pyramid at Modóm.

The angle tormed by ine semidameter of the eath as regarded
fiom the sun, or $8.30^{\prime \prime}$. fiom the sun, or $8.30^{\prime \prime}$.
The lime betwo on two successive equinoxos
365 days, 5 hours, 8 minutes. 49.7 second
365 days, 5 hours. 43 minules 46 seconds
The iwo poinis-in summer and winter-uthen the sun is al its greatest declinalion noth or south of the equator.
365 doys, 6 houre-introduced in anciont Egypt to corroot tho elvil calondar yess of 365 days. A "Sothic cycle" began when civil and Solhle new year coincided.
She ol the modem Aswan. The souihern limil of Egyot at the Flist Cataract of the Nilte, close to the Tropic of Cancer. Nearby quariles supplied the hard granite menolthe for the King's Chamber in Uno Groal Pyremid and for the tall Egyptian obelisks used fo measuring shadows.
Devoted is eariy years to publishing in London, becoming editur of tie London Magazine. An amateut astronomer and mathematiclan, he was also a sludent of Sctiplure and devoted much time to maslaring Old English, Wolsh, French, and Itallan. His Tho Gro Pyramid: Why Was 11 Buill 8 Who Buill It?. published in 1854, estabtished the π proportion to the pyramid. but his theory, that e Great Pyramis and . Ancient city in upper Egypt ronowned in antiqulty for ite hundred gates. Boceme promisont with tho Elevonth Dynasty (c. 2180 of.) of prwar shitled to the Nite Delth. There is a nearby larce
necropolis where kings and nobles nere entombed. It was sacked ny the Assyrlans in 661 B.C. The remeins of the temples of Luxor and Karnak ate silil among the most improssive in the world: A totoscopic instrument for precise measurement ol harizontal angles, used in land sunveying
Lunar god in form of ibls. patron of scribes and calendars. The Hermes of the Greeks.
By carefully measunng a baso lino and tho angles formed by either and of with a distant point. the distance a the point may be catculated by trioonometry.
A smatl moveable scate attached to a large scale 101 obtaining Iner fractiors of measurements.
The stoppod-pyromid tomples of Mesopotamie.

Adams, Waller Marshal
Agnew, H.C.
Aldersmith, Herberl

Amèlineau, Emile

 Antonladi, Eugono MicholArchibald. R. C.
Alkinson, R.J. C.

Baclie. Richard M.
Bailly, Jean Sylvaln
Ballerd, Robert T.

Barbarin, Georges
Baibé, Jutes
Barbor, Francis Morgan
Batnard. F. A. F
Bell. Edwerd
Bonavidos, Rodolfo.
Beverint. Luigi
Bindel, Ernst V.
Biot, Jear Boptlat
Bissing. Frledrich Wilhelm von
Blavatsky, Hetene P.
Boll, F. J.
Bonwck. James
BorchardL. Ludwig

BIBLIIOGRAPI IY

TEXT
The Bouk of the Master. Now York: Putnem, 1898.
A Letter fiom Alexandria. London: Longmans, 1838.
Gog, The Final Gentlo Power. London: R. Banks, 1915 The Great Pyramid. Its Divine Messege. London• Norgate \& williams, 1932
La géographlo de l'Egyplo. Paris: Impitmerie Nallonal, 8893.
L'Astronomio egypltonno depuls los temps los plus roculós. Paris: Gauthier-Villars, 1934
Notes on Logarithmic Sorrat of the Gotaen Section. New Haven: Yale Universtity Press. 1920.
Stonehenge. London. H. Hamilton, 1956.
Slonehongo \& Avobury. Lotidon: RM Stationery Offico, 1959. Silbury Hill. London: 88C, 1968.
the Latest Phase of the Great Pyrsmid Discussion. Pilliadetonia: Collins, 1885.
Histotre de lastronomie anclenne, Paris: Debure, 1775 Traite llo l'astronomie indienne el orientala. Paris. Debure, 1787.
The Solution of the Pyramid Problom. New Yotk: J. Wiloy \& Sons. 1892

L'enigme du Grend Sphinx. Paris: Adyar. 1846.
Le secrel de fa Grande Pyiamide. Paris: Adyar. 1945.
Orende Pyramide, le secret du Sphinx. Rouen: Darental Press, 1933 The Mochankal Triumphs of the Areiont Egyptians, London: Tribner, 1900.
The imaginary Metrorogical Sysiem of the Great Pyramid. New York J. Wliey. 1884.

Tho Architeclure of Anciont Egypt. London: Q. Boll, 1915.
Draméticas prolocias de la Gran pirómido. Moxico: Lỉro Mex 1961
te plramiar di Egitto. La Spezia: Modema. 1953.
Die aegrolischen Pyiamiden. Stultgatt: Freie Waldorf-Schule, 1932. Recherohes sur plusiers points de l'ostronomle égyplionne. Paris: Didot, 1823.

解 1801.

The Sectal Doctrino, 2 vols. Los Angetes: Theosophy, 1930. Isis Unveiled. Les Anceles: Thcosophy, 1931.
Sternglaube und Sterndeulung. Berlin: B. G. Teubner. 1918. Pyramid Facts \& Fancles. London: C. kegan Paul. 1877.
Lảngen und Richtungen der vier Grundakten der Grossen Pyramide bei Giso. Berlin: J. Springes, 1926.

Search inside
 \qquad
 \qquad}

Bothwell, A. Broasted, James H.

Bristowe. E. S. G.
Brooke, M, W, H. L. Bruchot, Julien

Brugsch, Kafin.

Biunts. Tons. Brulton, Paul Buratimi. Tho Livio
Capart, J.
Carrb, Jean Marie
Casey. Charles
cemy, Jarosiar
Chapmon, Arthur Wood Chapman. Francis W.

Cholsy. Augusle

 Clampl. SebastianoClark, R.
Clarke. Somers, and Reginald Engerbach
Colo. J. It.
Cole, John
Colats, Andie Fournier de

Belrfage zur aegypulschen Bautorschung und Alteriumskunde. Holl 1. Berlin: J. Spinger, 1926.
Oas Grabóonkmol dos Kónigs No-Usor-Re. Loipzig: J. C. Hinilcha 1907.

Das Pyramidenield von Abusir zur Zeit do tüntion Cynastio l.aipzig: J. C. Hintichs. 1907.

Die Enistehung ơer Pyiamide. Betin: J. Springer, 1928, Die Pyramiden, thre Entsithung und Entwicklung. Borlin: K. Curtlins, 1911.

Einiges zur Dritlon Bar poriodo der Grossen Pyramido. Borlin: J Springer, 1932
Gegen die Zahienmysuk an der Grassen Pyramide Del Gise Berlin: Behtend 1922.
The Alogic of the Pyramid. Goose, 1915.
A History of Egypl from tha Earliost Times to tho Persian Conquest. New Yoike Scribner. 1809
The Man who Bullr she Great Pyramic. London: William E. Norgake 1932.

The Great Pyramid of Gizoh. London Robert Banks, 1908.
Norvelles rechorchos sur io Grando Pyramido. Aix-an-Provenco: La Pansée Universitaire, 1965.
Matstiaux pour servil à to reconstruction du caiendfier des ancfens. Lelpzig: J. C. Hinrichs, 1864.
Egyptiens. Berlin: F. Schneider, 1850
Tho Socrets of Ancient Goometry. Copenhagen: Chronos, 1967. A Search in Secrel Egypl. London: Rider. 1936.
Mlsura Universa/e. Kıakow: Nakaladem, 1897
Memphis, ò rombre des pyramides. Biussels: Vromani. 1930.
Voyogeurs of Cortvains français on Egypto. Le Calro: instliut Voyogeurs of coind
Phllifis Oublin: Carson. 1880
"A Note on the Boat of Cheods." Journat of Egypllen Archaeology. Vol. 41 (1955), 75.
The Prophocy of the Pyramid, London: L. N. Fowlor, 1933, The Gleat Pyramid of Ghizeh from the Aspect of Symbolism London: Rider. 1931.
L'art de balí chez les Egyptiens. Parls: Rouveyre, 1504. Bibliografia critica. Firenze. L. Allegrind, 1834-42, Tho Ancionts Days. Cincinnati: Privatioly printod, 1873. Annient Egyplian Masony- The Bullding Cratl. London: Oxtord Universily Press, 1930.
Determination of the Exact Sise and Orientetion of the Geeat Pyromid ol Gizs. Coiro: Govorument Press. 1925.
A Treatise on the Circular Zodiac of Tentyra. London: Longmens. 1824.

La proportion egyolienne ot les rapporis de divine narmonite. Parts. Vega. 1957.

Corbin, Bruce
Coryn, G. P.
Cormack. Maribell
Colsworth. BAoses 8 . Comell. Leonard
Crowell. Harold L.
Daninos, A.
Damer, Flonces M.
Davidson, David
\square
-
Davie. John G.

Day, Vincent SL John
Dooourdemanche,
Joan Adolpho
Delambie.
Jean Bapiste sosepn
Deron, Dominique Vivant

Dickerman. L.
Duteu, A.
Dümichen, Sohsnnes
Dupuis, Charies F.

Durville. Menri

Edgat, Morion
-
Edwaids, I.E.S. Emory, Watior E .

The Great Pyramid. Goors Wilness in Sione, Gulhne, Okiahoma: Truth, 1935.
The Failh of Ancient Egypt. Los Angetes: Theosophical, 1913 Imhorep, Builder in Stono, New York, F. Walts, 1985.

Tho Rational Almanac. York: Privatoly printed, 1902.
The Afountains of Pharaoh. London: J. Helo, 1856
Time to Tell Shaller Island, Now York: Privately printod, 1963. Segiathrar Afonuments of Ancient Egypt Paris: E. Lerouse 1908. Our Bible in Stone. Satt Lake City- Desert View, 1931.

The Great Pyramid. London: Wuliams \& Norgate 1927.
The Great Pyrsmid, Its Divine Message. London: Willlams a Norgato, 1832
The Hidden Truth in Myth and Ritual and in the Common Culfure Pattein of Ancient Mettology. Leeds: Davidson, 1834.
The Judjement of the Nations in the Great Pyramid Prophecy.
London: Covevnant. 1910 .
The Peth to Peace in Our Time Oullined from the Great Pyramla. London: Covenant, 1943.
Tho Groat Siep of tho Gioal Pyiemid of Egyph. Grifint, Georgia. Privatoly printod, 1837.
Privatoly printod, 1037. Grlitin, Georgia: Privatoly printod, 1935.
Mermes, The Geometor. The King's Chamber in the Great Pyramid of Egypt. Grffin, Gaorgie: Privately printed, 1938.
Pythagoras Takes the Second Siep, Grillin, Georgla: Privatery printod, 1935.
Papers on tho Groat Pyramid. 1870.
rtaite des monaies. mesures et poids ancions et modornes. Paris: E. Leroux. 1913

Histoire de fastronomie anclenne. Parls: V, Courcler, 1817.

Travols in Upper \& Lower Egypl. London: T. Longman \& O. Recs.
1803. 1803.

On the Etymology and Synonyms of the Word Pyramid. Boston: J. H. Manstilld. 1890.

Ofcouvorte do rage. Parls: Morel, 1873.
Allageyptischo Tompofinsehrillon. Loipzig: J. C. Hintichs, 1867.
Memorse explicatif du Zodiac chronologique el mystique Paris: Courcier, 1806.
Le science secréte. Palls: H. Durville, 1928.
The Graol Pyramid-lls Soinntific Foalures. Glasgow: MacLure a MacDonald, 1824.
The Great Pyramid. Its Spirifual Symbolism. Glasgow: Bone \&
The Great Pyramtd and Its Time Features. Glasgow: Bone \& Huliey 1924.

The Pyramids of Egypt. Middleeax: Penguln, 1949.
Alchaic Egypt. Baltimore: Penguin, 1961.

Search inside

Engelbsch, Regineld and Somars Clarko
Erman. Adoll
Eyth, Max
Fakhry. Ahmed

Favaro, A.
Firth, Cecil M.
Fish, Everett w. Ford. Samuel Honard

Fraenzel, K.
French Government

Frith, Francls
Funck-Hotiol. Chatios

Galleani Viacava, E.
Garcla Cubas. Antonio
Garnier, Col. J.
Gauquelln, Nichel
Gelder, Mrs. Jane Ghunoirn, Mohommed \mathbf{Z}.

Ghyka, Malita C.
Gillain, Ollves
Gispen, W. H.
Goguet. Antoine
Goodsell, Samuel C.
G0000. A. 8.
Goyon, Georges

Anciont Egyplian Masonry; Mho Buildirg Crett, London: Oxtord University Press, 1930.
Lhe in Anclent Egypt. New Yonk Macmillan, 1894, Lebendige Kıälre. Berlin. J. Springar, 19 T9.
The Monumonta of Snoferv at Dashur. Calro: Govemment Prese, 1959.

The Bent Pytamid al Dashur. Cairo: Government Press, 1954. The Pyramids. Cnioago: Insiversity of Chicago Press, 1961.
intomo alla vita ed ai favori di Tilo Livio Burallini fissico Agordino del secolo XVII. Real Insthuto Venelo.
Excavations at Seqqarsh. Cairo: Institut Françaic, 1935.
The Eoyplian Pyramiods. Chicsgo: Privalely printed, 1880.
Phe Great Pyramid of Egypt. SL. Louls: Ford's Christion Repertory, 1882.

Die Chlops Pyram/de? Slettin:L. Saunier. 1924
Descriptoa de IEgypte-recuell des ooservations el des recherchios qui ont otá tailes en Eoypte peridaut l'expédition de l'arméa Irangqise. 21 Vots. Paris: French Govemment, 1809-22.
Lowor Egypt, Thobos and tho Pyramids. London: Mackenzle, 1862 La Bible et ia Grande Pyramide ơEgyota, temoignages ruthentiques du metre el de pi Monlreal' Hellet Vincent. 1956.

La proportion en architecture, l'equerre des maltres d'oeuvre. Paris: Hellel Vincent, 1951,
Composition al nombre d'or dans les osurros polntos do la Renaissance. Paris: Vincent, Freuls, 1850.
El legado de tos antionos. Lima Privately printed. 1966.
Las Dylamides y el universo. LIma: Prlvateiy Dininted, 1960. Ensayo de un estudio comparalivo entre las pyremides. Mexico: I. Escalonte, 1871.

The Great Pyramid: Ifs Bullder and Ifs Prophocy London: Robert Banks. 1912.
The Scientific Bas's of Astrology. New York: Stein \& Day, 1969. The Storehouses of the Kings. London: W. H. Allion \& Co., 1885. Tho Buried Pyramid. Now York: Longmane Groon, 1956.
The Lost Pyramid. New York: Rinehart, 1958
Le nombre đ'or. Paris: Gallimard. 1931.
La légende de la Grande Pyiamide d'Egyple. Buusvels: L'Egiantine, 1926.

Het Pyranide Gelool. Copenhagen: Kampen, 1953.
Drigin of the Laws: Arts and Sciences. Edinburgh: A. Donaldson a J. Reid, 1761 .

Book ol Stubborn Facls, Now Haven, Hoggson \& Pubmor, 1885. The Atrgic of the Pyremids London: Women's Printing Society. 1915
Les Irscripilons et grellitit des voyageurs sur la Grande Pyramide. Cairo: Soclété Royal de Góogrephic, 1944.

Graham, Edwin R.
Grandjean, Bent Otto

Gray, Jutien Thorbirn
Greaves. John

Gressmann, Hugo
Grimthorpe. Edmund Becket1
Grinsell, Leste \mathbf{V}.
Grovert, Jacques F. L.
Groffier, Jean
Grosal, Vincenzo
Guemard. Gabrle

Haberman. Frederick
Hannay. H. Bruce
Hassan. Solim

Heln Heinricn
Henry, J. ©.
Herodotus
Herschel, Sir John
Hilaire de Bareton (pera)
Holsches
How ard-Vyse, Richard Winlam
Huod. A.E.
Hultseh, Friedrich 0 bek. Ferrand

The Anoient Deya or the Pycamid of Ghizeh in the Light of History. Chicsgo: C. Jones, 1888.
The Physiological Basis of the five Arts: A Theory. Slorkens he Physiological Basis
varter:Albeitslund. 1987.
Pvarlemidealbentsiund. 1987. Alberislund, 1987.
The Authorship and Message of the Greal Pyramid. Cincinnall E. Stoinmann. 1853.

Pyramidographis, or a Description of the Pyramides of Egypt. ondon: J. Erindley. 1736.
all Roman Foos and Denarius," in Churchill: A allecilion of Voyeges. London. 1732, Vol. II, p. 975.
tha Towar of Babol. Now York: Jowigh Institule of Rellgion Prese, 928.

Book of Building, Civll \& Eceliesiastical, London: Crosby \& Lockwood. 1878.
Egyorian Pyramios. Gloucester: J. Bellows. 1947.
Description des pyraunldes de Ohize et de la Vilie du Kalie Parls: ogerot-Fehet, 1801.

La mathémolique de inistoire al son élique Parls: Le Colombo. 1057.

- leggende delle piramidi, Genova: A Ciminago, 1880.

Historique de la Commission des Sciences el Arls et de rinslifut Eoypte. Cairo: Barbey. 1936

The Great Pyramtas Message to Amerka. St. Petersbuig, Florida: he King dom Press, 1932.
the Secret ol Egyptian Chronology. London. Sampson, Law, Marston, 1736.
The Sphinx, fls History in the Light of Recont Excsvatlons. Cairo: Government Press. 1949.
the Greal Pyramid of khulu ana us Chapel. Calro: Govemment Press, 1980.
Das Genermurs der Grossen Pyramidg. Zalle Sis Vorlag, 1921. La voix du Sphinx. Parls:Editiona Jean Meyor, 1826. The Histories, Various edilions.
poputar Lectures on Sclenvific Subiects. London: W. H. Allen. 1880.
Le mystere des pyramides et la chionologle sothiaque égyplienne," Eludes Orientales $\mathbf{\# 4}$. Paris: Qeutiner, 1923.
Uvo das Grabdenkmal dos Königs Chophron. Leipzig: J. C. H. Hintlehs, 1812
Operations Carried On at the Pyramids of Gizen in 1837. III Vols. ondon: J. Fraser. 1840-42.
The Greal Pyramid of Ghiza. Exeter. Proccodings of the Clition Antlquarlan Club, 1888.
Griechische und Römische Metrologie. Berlin: Wiedmann, 1882. ta Pyramide de Cneops a-r-alle lives son secrel? Mallnes Cell. 1951.

Search inside

Jamas, Sir Honry
JHiters James A
Jeffery, Edmond C.
Jequier, Gustave Jomerd, Edmé Fiençols

Kingstand, witlam
Kitctist, Athanasius Kleppisch, K.

Knight. Chariles Spurgeon
Krotel. August
Kolosimo, Peter
Koudaschool, Viedimir
La Jonquibro. C. Do
Landone, Brown
Lane, E. W.

Lange, Kurt
Latit, Abdal
Latimor, Charles
Lauge, Jean Philippe

Lo Corbusior (psoud. Charles E. Joamerat. Gris)

Ledstus. RIChaid
Lewis, Havie Spence:
Libri, G.
Lind Eay, Lord A. W. C.
Lockyer. Joseph Norman

Notes on the Great Pyramid of Egypt and the Cubits Used in lis Dosign, Southampton: T. G. Guteh, 1860.
rhe Graat Sphinx Speaks to Goors Peoplo. Los Angotos, Alberts, 1942
The Pyramids and the Patuarchs. New York: Exposition Press. 1952 fouilles à Saqqarah. Calro. Instliul Francais d'Archeologia, 1935. Doscription genérola de Memphis el des pyramides. Parls: mprimerie Royelo. 1829.
Aomarquo sur los pyramides. Paris: Imprlmorio Royale, 1828 The Great Pyramid in Fact and in Theory. London: Rider, 1832. obellsci aegypliacl. Rome: Varesil, 1666.

Whlikor outer Mathematische Ubetlegung Delm Bau der Choops-Pyramide, Munich: Oldenburg, 1927.
The Mystery and Prophecy of the Great Pyrainid. San Jose, California: Atsora, 1033.
Choops der Pyramidenerbauer Leipzig: Dyksche, 186 "/ Draneta sconoscluto. Milan: Sociela Editice Intertiet. 1959. " Shiall Come to Pass. Now York: Pisvately printed, 1936. L'oxpédition on Egyplo. Paris: H. Lavanzaslle, 9899-1907. Prophocies of Molechi.Zecok in tho Groat Pyramid. Now York: The Book of Gold 1940.

An Account of the Manners \& Customs of the Modern Epyplians. London: C. Knight, 1856.
Pyraniden. Spllinxer, Pliaraonen. Munkch. Hoimel Verieg, 1952. Relation do l'Egypto. Paris: Oreutal et Wurtz, 1810.
tho Fronoh Motric Systom o: tho Batlice of the Standords. Chicago: T. Wilison, 1880.

Fouifles à Saqqarah. Cairo: Institul Français, 1935.
ees Pyramides de Sequarah. Cairo instilut Francais, 1961. Les Pyramides a degiés IIF- dynastie. Cairo. Insillut Francals. 1962 Observations sur les pyramides. Cairo: Inslitut Français, 1960. Le probldme des Pyromides d'Egypto. Pans: Payot 1948.
The Hodulor. London: Fabor and Fabor, 1054.
The Modulor Il Cambridge. Mass: MIT Press, 1968
Uber den Bau der Pyramiden. Cairo: 1843.
The Symoolic Prophecy of the Great Pyramid. San Jose. Calitornia: Amote. 1936.
Histoite dee eciences mathbmatiques on Italio. Pans: Panton, 1835. Lottors from Egypt, Edom \& Tho Holy Land. London: Honry Colburn. 1839
He Early Temple and Pyramid Builders. Washington, D.C. mithsonlan insiltution. 1893.
surveying lor Archcologisls, Londo
-Hote, Nestor Longh. James Perol

Macraughton, Duncan Mallile Benol: de Maragioglio, Vito, and Celosto A. Rinaldi
Marks, T. Septimus
Martiny, Gunter
Maspero, Gnston C. C.
McCarty, Louls P.

CConkey. G. M. an

 V. C. RutusMayer, Lucwig
Mencken, August
Mohammod, Boy
Moremans. Vieler

Moreux. Theophile
Moıgan, Jacques des
Morison, Stonley
Muck, Otto Hoinich Munck, Carl V. Valdernar Neikers, Herman

Neugebauer. O .
Nowbery, P.E
Niekkein. J, Bernord
Noolling, Fritz
Norden. F. C.
Ostraridor, S., and L. Schroedor
Pacioll, Luea
Palmer. Ernesi \mathbb{G}.
Parcker, John T.

Stonenenge and Oinet British Stone Monuments. London: Macmillan. 1856.
Notice historique sur les obelisques Egyptioris. Porio: Leleux, 1830. In tho Beginning God Croated the Heavon and the Eorth New York Erudite Book. 1936.
A Schame of Egyotan Chronology, London: Luzac, 1932. Oescription de rEgyple. Paris, Chex Genneau el Rollin, 1735. L.Architetura dollo Piramidi Monfite, Rapallo: Ottioine Graficho Canessa, 1963.
The Great Pyramid. Its History and Teachings. London: S. W. Pattidge, 1879.
Die Kulturichtung in Mosopotemlen, Borlin: Hans Schoetz, 1932. Atl in Egypt. London: Whlliom Hainomann, 1901.
The Grear Pyramid of Jeoreh. San Francisco Privately prinled. 1907
A Coristruction Subsilitute for PI III the Great Pyramid," Popular Astronomy, Vol. Il (1943), 185
Views of Egyot. London: R. Bowyer, 1804.
Dosigning and Building the Groal Pyramid. Battimors: Privataly prinlod, 1963.
L'age et to but des pyramides. Alexandria: Privately printed, 1885.
Pfiamides ef gratte-ciels au pays des pharons. Belgium: A IEnsaiene dus Plomb qui Fond, 1951.

La Science Alysterieuse des phareons, Patis: G. Douin, 1923.
Los ónkgrnes de la science. Paris: G. Douin, 1949.
Fouillcs d Dachour. Vienna: Mars Juin, 1894.
Fre Luco Pacloft. Now York: Grolier Club, 1933 Choops und die Grosso Pyramide. Berllin: Olter Watter, 1958. Pyiomidorno Og Sphinxen. Copenhagen: Forlallem, 1921.
Der Goldene Schnitt und die Geneimnisse der Cheops Pyramide. Cin: M1. Dumont, 1907.

The Exact Sciences of Antquily. Princeton: Princeton University Press, 1951.

El Bershah. London: Egyptian Exploration Fund, 1893-4.
Testimony in Stono. Hoverhill, Massachusetts: Destiny, 1961. Die Kosmischen Zahlen der Cheops Pyramide. Stuttgart E. Schenzenbuli. 1921.

Travels in Egypt anld Nubia. London: L. Davis 8 Cheyners, 1757. Psychic Discovarios Behind the Iton Cuttsin, Englowood Clitfs, N.J.: Prentice-Hall, 1970.
De Divina Proportione. Mi ano: Fontes Ambiostanl, 1356.
The Secrel of Ancient Egrpt. London: W. Rider, 1924.
Tho Ouzdrature of the Ciiclo. I.ondon: S. W Benedict. 1851

Search inside

Parker, Richard A.
Parker. Ricnard A_{n} and O. Neugebauer Parrot, André

Parsons. Albett A .
le Pere, Gratien
Perring. John Shae
Persigny, Jean G V. F.

Patrio. William Mathow Flinder

Platt, Paul T.

Phlu-1srael (pseudonym) Pococke. Ricluard

Polixa. Johann
Power, Alexander
Proctor, Ricnaro Anthony
Qunby, IValson Fell
Racey. Robert A.
Rand, Howard 8.
Rawlinson, Beorges Reisner. George Andrew

Rey, Abcl
Richer, Jean
Ritlert, G. R.

The Calendars of Ancient Egypt Chicago: Chicago Unlversity Press, 1950.

Egyptlan Astronomicel Teals. London: L. Mumphries. 1960-54.
Ziggurats al lour do Elabol, Paris: Michel, 1949
Tho Towior of Babel, Now York: Phllosophical Library, 1955. Now Ught on the Greal Pyramid. New York: Motaphysical, 1883. "Memolre sur les pyramices d'Egypte." in Description de 'Egyple Parls: 1820.
The Pyramids of Gizeh from Actual Suivey and Measurement on the Spol. London: J. Fraser, 1839-42.
Do la deatination at do l'utilito pormenente des pyramides d'Egyplo. Paris: Ponlim, 1845
The Great Pyramid London: Tract Sociely, 1893.
Moidum. London: David Nult. 1892.
The Prramids and Temples of Gizeh, London: Fietd \& Tuer. 1883. Anciont Woights \& Measures. London: University College, 1926. Ton Yoars Digging in Egypt. London: Religious Tract Society, 1893 70 Yoars in Archeology London: S. Low, Mareton, 1931. A History of Egyd. London: Methuen, 1896-1905.
The Socrot of Socrots. Now York: Thothmone Book, 1955.
Secret: The Pyrsmid and tho Lso. Naw York: Comet Pross Books.
195s. 1550.

The Great Pyramid of Eoypt. London W. A. Guest, 1879,
Thie rravels of Pococke through Egyot. London: The World This Yravers of
A Description of the East. London: W. Bowyar, 1743.
Die Sprache dor Cheops Priamide. Steltin: Fischer und Sehmidt, 1922.

An Appeal to the Jewish Nation. London: Privately printed, 1922 The Great Pyramid: Observatoty, Tomb. and Temple London: Chatto \& Windus. 1883.
Solomon's Seal. Wilmington, Detaware. C. P. Johnson, 1880. The Gizeh Sphinx and Middle Egypilian Fyremids. Winnipog, Canada: Public Preas, 1837.

The Challenga of the Great Priamid. Havemill. Massachuegtts: Destiny, 1943.
Ifisiory of Anclent Egypl. New York: J. W. Lovell, 1880. Alycerinius, the Temples of the Third Pyramid of Giza. Cambikge. Massachuselts: Harvard University Press, 1931.

La Soience ofiontato avant los Grecs. Paris: La Aenalssance du Livro, 1930.
Geogrephie saciofo dı monde Grec Paris: Hachotto, 1956.
The Greal Pyramid. Proot of Goo. Haverhill. Massachusetts: Destiny, 1944.

Ainaldi. C. A, and
V. Maragioglio

Rouchter, Alexandre
Rolt-Whteelet. F. W.
Rosenberg, Karl
Rougia. Mourice
Ruhimann, Gorhard
Rutherlord, Adam

Sander, Hansen, Ce
Sandys. George
Schiaparelli. Ernesto
Schmalkz, John E.
Schotl. Siegtried
Schwaller de Lubicz. R. A

Saise, J. A.

Shaw. Robert
Shealy, Julian E.
Sinnett. Alfred P. Skinner. James Restion
\qquad

Smith, Rober William Smith, William Stevenson Smith, Worth

Smyih, Charles Plazzi
'Arehichluro dollo piramidi monfilo. Repallo. Officine Grafiche Canesca, 1863

De farchitecture nafurelle, Paris: Vega. 1949
The Pyramd Bullder. New York Dapplelon, 1929
Das Raeise! dar Cheopspyramice Vienna: Osterrelchisctie, 1925 Le Cle Secrête do la Pyramido. Paris: Dunod, 1930.
Kloino Gcechichto dor Pyramiden. Dresden: Verlag der Kurst, 1962. Syramidology. Dunetable, Bedfordehiro: Institute of Pyramidology. 1961.

Anglo-Saxon Israel. Naplewood, New Jersey: J. A. Greaves, 1934. Anglo-Saxon isras. Naplewood. New Jersey: J. A. Greaves, 1934 Bhold the Bridegroom. Giaspow Phatey Dinied 1328 (?.) A New Revelation: The Conirove Oullino of Pyramidalogy. London: Institute of Pyramidology. 1957.
D. Gemmoiso Egyffiske Pyramidekstor. Copenhagori: Bianco Lonos. 1953.
Sandys Travalles. Loncon: J. Sweeting. 1652.
" Signillcato Simbollco delle Piramidi. Rome: E. Loescher. 1884.
Nugget's Irom King Solomon's Mines, Boston; Barton Press, 1968. Pyragets Symbols. Boston: Privately primied, 1911.

Untarauchungen Zur Schriftgoschichle der Pyramiden. Heidelborg F. Hornung, 1926.
e Rol de la ineocratie pharaonique Paris- Flammarlon, 1961 Le Miracie Egyotlen. Paris' Fiammarion, 1988.
Le Temple de thomune: Apet ou Sud a Louasor. Paris: Caracteres. 1958.

Miracta in Stono, or tha Grgat Pyromid of Egypt. Philadoiphia: Portor 8 Coatos. 1877-8.
four Cosmical Lecturis. St. Louis: Becknold 1889
The Key to Our God Given Heritage. Columbia, South Catolina. South Carolina State, 1967.
The Pyramids and Sionohongo. London: Theosophical, 1258 Actual Measures a the Greal Prramid. Toledo. Ohio: Blode. 1880. The Gieal Priamia of Jizen, the Plan and Dolect of its Construction) Incinnait: R. Clatke. 1871.
Koy to the Hebrew-Egyptian Alystery in the Source of Measures. Cinoinnati: R. Clarke, 1894.
Some Light on the Egyptian Meltied of Chronology. Cincinnati: 1876.

Mysteries of the Ages, Salt Lake City: Pyramid. 1936.
Atl 8 Archilecture of Anclent Egypl. Middlesex. Penguin, 1958.
Isios of Splondor. Clevoland: L.ovis S. Vosburgh, 1912.
The House of Glary. NeN York: Wise, 1939.
Miracte of the Ages. Tarrytown, New: York- Book of Gold. 1952
Llle and Work at the Great Pyramid. Edinburgh: Edmonton a Douglas, 1867.
Now Measuies of the Great Pyram/d, London: R. Banks, 1884.

Straub, Waltor L. Taylor, John

Thom Alexander
Timording, Hointioh
Tompikins, Henıy
Touchard, Micnel C.
Tracey, Benjamin Thovenot, Molohisodech Tucker, Wliliam \perp U.A.R. Vateriani, Domenico Vechl. C. F. ven der Waddell, L A.

Ward. John
Watkins, Altred Watson, C. M. Welgall. Arthur Wemer, Rudolph Whilohouse, Fred \mathbf{C}. Wulkinson, Sir Gardner Winckler. Hugo Wilson, John

Wood. Horman Gaytord

On an Equal-Surface Projcetion tor Maps of the World. Edinburgh: Edmonton \& Douglas, 1870.
On the Antiquily of intellectual Man. Edinburgh Edmontoris Doi iolas, 1868.
Out intretliance ifit the Great Pyramid. London: A. Stranam 8 Co., 1864.
reat Pyramid \& the Royel Society. London: N Iebletor \& Co. 1874.

The Great Pyramid and Current Events, Kew Gardens, Enoland Pilvately printed, 1929
The Mystery ol the Great Pyremid. London: Roulledge, 1929
Collected Addresses on the Great Pyramid. London:J. Bale \& Sona
The Witness of the Great Pyramid. London: Convenant, 1927. History and Signiticance of ine Great Pyramid. London: Staples 8 Slaples, 194-17).
The True Purpose of the Greet Pyramid. Exoter: Blarne \& Evens. 1035.

Anglo-israel inystories Unmasked. Omaha, Nebraska: Straub, 1937.
The Greal Pyramid: Why Was II Buill? \& W/no Buill It? Londan: Longmans, Green, 1864.
Megollthic Silos in Eritain. London: Oxford Univorsily Pross, 1967. Dor Goldone Sehnitt. Leipzig: B. G. Toubnor, 1819.
The Pyramids and the Ponlateuch, Londion. Privalely printed, 1873 tes Pyramades et teurs mysteres. Paris: Editions Platiete, 1986. The Pillar ol Witness. London: W. H. Quest, 1876.
Rolation do divors voy agos currioux, Patis: T. Moolto, 1606 Plolomaic Astrology Sideup, Kent: Pythagorean Publications, 1962. The Noctuinal Magic of the Pyramids. Cairo: Gasion Bontien, 1980. Altante dal Basso ed allo Egilto illusiralo. Fiorence: P. Fumagalli, 1836-10.
De Steenen Sproken. Don Hasg: VJ. P. van Stockum. 1950. Egyptian Civilization, its Sumerian Origin and Real Cnronology. ondon: Luzac \& Co.. 1930.

Pyramids \& Progress, London \& New York: Eyie \& Spolitswooda 1900.

The Old Streight Track. London: Methuen, 1925
The Colfer of the Grear Pyramid. Palestine Exploration Fund, 1500. A History of Itie Pharaohs. London: Thomton Butterworth, 1925. lo Sceret de la Pyromida do Choops. Brussols: La Flambeo, 1843, Tho Pyramid-Hill of Gizeh. New York: Privataly printed, 1885. The Archilecture of Anclent Egyot London: John Murray, 1850. History of Babyionia and Assyria. New Yoik: Scribners, 1907. The Lost Solar Systom of the Ancients Discovesod. London: Longman Brown Groon, 1858.

Wynn, wallor
Yeats. Thomas
Zaba, Zbynek

Aldred. Cyzil
Borchardi, Ludwilg

Brugech, Karl H .
Decourdemanche. Jean
Adolphe
Engelbact, Reginatd
Gardincr, Atan H.
Griffity, Froncis Llowellyn
Hapgood, Charles H.
Homolle, Theophlie

Hulisch, Friedrich

Kees, Hermann
Laver, Jean Philippe

Montel. Paul
Monter. Plerre
Oxb, August
Pettio, Willifam Mathow Pinders
Santhiana, Giorgio de, and Herthe von Dechend
Segré, Angelo

Tho Last and tho Noxt Wer. London: Socioly of Communion, 1927. A Disserfation of the Anfiqualy, Ollgin and Dosign of the Principal Pyramids of Egypt. London-J A Aich. 1833.
Cllentalion astronomique dans rancieme Egrpte el la precession de raxe ot monde. Prague: 1953

APPENDIX

Akhenaten, Pnaraon of Egvol: a New Stuay (London 1968).
"Eln weltarer Versuch zur Làngebesilmmung der agyotischen Meilen." Janus: Fextischrlil zum C. F. Lehmann-Haupl's sechsulgstem Geburlsiege (Wien, 1921). I, 119-123.
Dic Goographie Xgyptons nach den altagypitischon Denkmälorn (Leipzig. 1867).
traité pralifua des polds al mosures des pouples anciens el des Arades (Paris. 1909).
Precls of the Survey of Egypt Pader No. 39, by J. H. Cole." Annaies du Service des Antiquitês de régyple, 25 (1925), 167-173. Anclent Egyptian Onomastica (Oxtord, 1943).
"An Ompratos from Napata." Journal of Egyptlen Archaeology, (1916), 255

Maps of the Ancient Soa Kings: Evidonco of Advalleod Clvillzatlone ine lce Age [Philadelphia, 1968).
"Ressemblances de tomphalos delphique avec quelaups reprasentations epyptlennes." Revue des éludes grecques. 1919 338-358.
"Be träga zur zagyplischen Metrologie," Archilv fur Papyruskunde, (1903), 87-03; 273-295: 521-528.

Anciant Egypti a Cullural Topography. Tranctatod from the German by lan F. D. Morrow. Ediled by T. G. James (Chicago, 1961).
ludes complementalres sur les monuments au rot zoser Saggarah, Reponse a Herbert Ricke (Bemelkungen zur gyptischien Baukunst des Alen Relcites) Supphement aux Annazes du Serviee des Anliqultés de l'Éguple, Cahier No. 9 (Le Cairo, " 1948). "La Géometrie des pyramides," Chronique d'Egypte, 19 (1944), 166-171
"Sur ia prande pyramide de Guizen," Builetin des Sciences Malhematiques, 71 (1947). 70-81.
Géographic do l'Ègyplo ancienne (Paris 1957).
"Kor und Kab: Antike Hohimases und Gowichio in never Boieuchtung." Bonnor Jahrbüohor, 147 (1942), 91.216.
Moosures and Woights (London, 1934)
Hamiers Mant: ant Essay on Myth and the Frame of Time (Boston: 1969).

Molrologia e circoleziona monetaria degh antichi (Bologns. 1928).

Codokaschoinoo, das Zwölhmailenland en der Grenzo von Aegypten und Nublen (Leipzig. 1801)
"The Detphian Cotumn of the Dancers." American Journet of
Archeology, 61 (1957), 187.
"A Hislory ol Measures," Americen Behaviorol Scientisl, IV (1981), No. 7. 18-21; "The Origin of the Alplabel," ibid., No. 6, 3-7, 35 .
"Los Móritos al tos lllusions do M. Flinders Potrie." Arothuse, VI (1931), 31-35. Cl Buletinul Societatei Numismatice Romane, XXVI
(1921), Yolum tesilv Inchinat D-lui M. C. Sulzu, and XXV (1930),

INDEX

Abd-artaltr' on Cheops Pyramid 2.21, 383 Abdullah At Mamun 5-6, 593 E-7, 0, 13, 15, 17, 25, 243 245,252, 383
latiture measured by $6,21$. 22. 200
abu Abd Allah Muhemmed ben Abdurakin Alksiei?
bury Hill (Eng.) 12
Abusir pyramid 28
Abycos 268
abycos 268
Egyptian 370
English 74
Roman (lugerum) 370
Acropolis 355: see also Parthenon
damsi, W. Marshal 25
"Agartha" of Tibet 269
Agatharchides of Cnidua 201
gatharch dos of Cnidus
371, 372, 373-75, 383
on Cheops' Pyramid 201. 203. 209. 371

Anmosis 1388
Alton, Mr, 90, 91
khnaton (Akhenaten) 201, 202, 207, 322, 336-38, 340. 341. $342.363,345,373,383,38$
Akntazen (Aknet-Aten) 201. $33 r-38,340,342,343,373$ 3383
383
"Boundary Steteo" 201, 310 41,312
Akkacien 290, 296
measurement: ga (pInt) 312
Imêru 319
Aldred, Cyril on Akhnate
Alexander Polyhistor 2
Alexander the Great 214-15
Alexandria 5.214
nibraty 3,5, 215
All Gabrl 81, 85, 91, 97, 99,
383
Alvarez, Luis Waller 383
Kephren, pyramid of 270-72. 275
Alvarez Lopez, Jose: Cheops Pyromid. Ifeory 265, 266 267
Fisica y Creacionismo 264-65

Amelineau, Emile 224. 383
Amenemher 302, 38
pyramid, Lishl 220
Amon (god) 302, 338, 349, 38
Amon (sod) $302,238,346,384$
Anglure Baron d' 18
Annu see Hellopolis
anomalistic lime 111, 384
Antishenes 2
Antoniadi, Eugone Michel:
Cheops' Pyramits, theory
158, 233.253
Antonlnus Pius 354
An-rang (China) 183
Apor, T.
Apion 2
Apollo (god) 349; see also Horvs
abian Guli 33 s
Arbuthnol, Lady Ann Es
America 356, 358
re of the Covenant 278
Aristagoras 2
Aristolie 5
armillary sphere 195
araura (unit of measuromenl)
212
shin (unit of measurgment)
305
arlaba (unll of measuremert)
206, 237, 312-13, 314, 318 319, 320, 360, 3ee also
ounco, artable
Artemidorus of Ephesus ?
Arya-Ehata 384
ssizes of Weights and
Neasures 314
ssycia 155-66, 216
ostro!pbo 155
astrology 281-83: see also
cosmolooy: Eqyplian
mysterles
astionomy 4,5-6, 21, 347-48, 354, 38
ezimuth 155, 384
Babyionia and Mesopotamia
174, 176-77
Britaih 127, 129-
38, 139-40, 141
deolination 153, 156, 158, 386
dovices and Instruments for
measurement, see armiliary
astronomy, devices (conid) hronomeler: lens: rod. g-cerrying; telescop
bo, direction
durnat pattorn 156. 387
Eyplian 150 155, $159,161$.
165 168-67, $168-69,172-$
78. 180, 181, 182. 210-12.
215. 216, 285, 320, 327.

347, 369-70, 378
$\underset{\substack{\text { equinox } \\ 387}}{ } 156,153,159,165$,
397
quinoxes, precession of the $112-13,145-46,165,166$.
$169,172,174,175,380$, 381, 391
Greek 5-6, 21, 22, 31, 138. 215.285
heliacal rising or selting 155 168. 107, 388
reland 140
reland 140
right a6consion 158, 158, 391
solar parallax
solisice 392
sunspots 155, 281-82
zenilh 183
300 also astrology;
cosmology; earth; latituda
and longilude; lime; zodiac
Aswan see Syene
Atheistan, Kinq $344-45$
Atkinson, R. J. C. 138
otur (unit of measuroment) 178, 303. 321, 327, 333. 3е0. 3 31,342

Babylon. zlggural 184, 188-87, 378
Estaylonio: astronomy 174.
178-77
cosmolopy 184
measurement 21
cubil 210, 288
zlogurots 119, 184, 166, 187-
$88,279,378,392$
88, 279, 379, 392
Mesopotamia: Sumerians
eaghdad (Dar-al-salam) 5
Eallard, Robert T. 117, 119-20,
268, 384
Cheops' Ryramid, theory 220 The Solution of the pyramid

Berbst，F．M．：Cheops
Fyrainid theory 223， 226 231．233． 268
Nechancical Trumphs of the Anclent Egyolfans 223
Berluk，Suttan 18
Barnard．F．A．P．107，141， 384 Barsípki：ziggurot of Nabu 184 Bedis Venerable $139 \sim 40$
Behder（Hermopulis Parva）
178，180，181，201， 211.
293－94，289，315，317， 333 ， 334，338．339，340，342，343． 384
Beizoni．Giovanni Batusla 384 Kepiren，pyramid ol，
Bonjamin ben Jonah 20
Bessol，Friodnch Witholm 212 Bible 217，262－63． 319
Blot．Jean Bapuste 121，188． ${ }^{384}$
Cheops Pyromid，theory 121 n 360
bild（as symbol）298， 349 Chaops＇Pyramid 256－57． 258 Isis Unveired 257
The Sacres Docirine 256－57
Elue Nile 339
The Book α the Dead 93．259－ 60，284，369，370， 385
Borchardi，Ludivila 383
Cheops＇Pyramid．axploration 202． 366
theory 220，236，238－39， on Egyptian
On Egyplian measuromont
Eorst Lyle B．138－39
Eoscoviten Father Rugolero 362－63
Bouct．ard Capl．Pierre－ francois－Xavier 51,385
Eevis．M．275， 27
orasse flathom；orgria，unll of measur ementl 203， 206, 209， 212,213
Britain：magalithic
Brial． 212,21 hic monumonts and astronomical
133，137－38，139－40，141，
133． $137-38,139-40,141$,
146；see aiso Mlaes Howe： stonehence
Bructiet．J．：Cheaps＇Pyramid，
Itheory 251－52
Erugscl）．Kall H．292， 385

Bruntés，Tons 385
Choope＇Pyramid，theory 235.
${ }^{261}$ The Secrats of Ancient Geometry 256．257．261－62． 38S
building constivetion 220，222－
building constivetion 220， 222
35
corbeled masonry 153,386
Ulinting tiue level 151,220 ＂stretching ol the cord＂ 150.
380
stonoworking toole：103，222，
stonoworking toole．103，222，
228，228， 323
see also Cheops．Pyramid ol． building consiruction columin；mastaba； Parthonon；pyton；pyramid； Bull，cult of the 169，172， 174 Burallini．Tito Livio 3．0．31，96， 304，305． 385
Buloridas 2
cabsia 260－61，301． 385
cabsia 260－61，301．385
Cairo（EI Kaherah）17－18， 317 Smylh＇s descriplion 78 Campbell．Cot．Patrick 65． 385 canne（unit of measurement） 206．209． 212
Canterbury，Archblshod of 24 Canterbury Cattedral 139 Cape Ac Zayfiyah 340
Cardono，Girolamo 22，317， 385 De Subtititace 317
Cassini Cossro Franeesco 386 Cassini，Giacomo 386 Cassini，Giacomo 386
Cassini， $\mathbf{G} 800 \mathrm{mo}$ Domenico
Cassini Gian Domenico 385－
85
Cassini family 32，33，385－86 Caviglla，Glovannil Battiste 56 ． 61，386， 389
Cheops＇Pyramid，exploration 56－59，61， 386
Cayce，Edgar 115， 385
chain（unil of moasuromont） 31． 306
Champollion，Jean－Francols： Rosettia Stone decipnered S5． 201， 305
Cilantemagne 313
Charroux，Robest：Le Livio des Seoroto Trahis 269 Chassapia．C．S． 138

Cheops（Khulu）65．118．234， 235． 236
Cheope．Pyramid of 1－3．4． 141－42，183．217，236． 275 Ascending Passage 10－11， 12 25，81，115，151－32． 239. 240，242，243，251，252－53， 255
granito pluge 9 10，15， 25,
$78,235,236,238,240-41$,
78．235，236，238，240－41，
243．244，245，246． 251. 252－53． 255
limestone plugs 10，25， 58 ，
$236,240-41,245,252,255$
236，240－11，245，252， 255
bats in $25,27,35,36,14,56$ ．
57
 $68,105,151,153,220,223-$
35,240 omont 105
dales assigned 219－20． 227 granite 1，9．10．15，17， 25. 26．27，36，63，78，103， 220 235，238，240－41，243， 244 245，248，249，259， 25
255，266，270，392
26．65，67．－68．220． 229.
230．235．240，241． 242
245，248，249， 255
mortar 105，229， 230
ploster 247， 240
Campbell＇s Chamber 63,65
385
capsto
capstone，see pyramidion
berow below
casing stones $1,2,3,17,18$ ， 19．45．67．．66，89，103，105， 108，220，225－26，228．229， 230－31，232，244，265－66 Commentaries on：Abct－al－ Latit 2．21， 383
Agaitharchides 201，203， 209， 371
Blavateky 256－57， 259 Diodorus Siculus 3，15． 371
Herodolus 2－3．65．70． 190 194．196．201．222．225－28． 23i，234，307，368，370，374 375
Hogben 142
Muck 143，145，
Muck 143．145． 146
Pliny 3．208．231，371， 373 Strabo 3，45． 371
corners see sockeis below
Davison＇s Chamber 36，36， 44
66，63，244，249， 386
Dosconding Passage 3，9， 19 ，

Cheops，Descending Passage （contd．）
24，47，58，81－82，87， 100, $24,47,58,81-82,87,100$,
$101,14-15,150,151,153$, 239，239，241－45 passim， 249，251，252， 255
entrances $3.7 .9 .17 .18 . ~$
81
81
oxptoration or．Abdullah AI Momun 6－7，9－13，15， 17 8orchardt 202， 366
Caviglia 56－59，61． 388
Davison 35－36．38．，386
Greaves 24－30 pessim
Howard．Vysc 59，61， 63,65 ， 67－68，81，101，105，385， 386， 388
Petrie 97－98，99，105．228， 229，234，247－48，251，279，

Smyth 78，B0－81，91，100， 101 gralfiti 2，3，38， 252
Grand Gallery 12，25，27，35－ 36，87，115．152－56 passim． 158，211，236．239－47
grolto，see pit belaw
hieroglypha reported
hicrogiypha reported 2， 15
Horizontal Passage 11， 25
＂King＇s Chamber＂15． 17.
26－27，29，47．49－50．63．
65．87，75，101，103， 115.
119，191，220，235，239， 240，244，245，24i－48， 252. 253，255．264，270， 275,
279，312，322，363，392，
olfier（＂＇asicophagua＂） 15
$28,27,47,75,83,103,257$ 266－67，278，321－26 passim porteullis 15，26，253， 270 ventilating shafts 29－30， 67 ，
78． 101
Lady Arbulhnol＇s Conamber 63． 65
legencs and superstitions 2 ． 18．19，21．217－18．219－20， 263－70． 271
as Masonic symbol 38．256， 261， 301
measurement 209， 213 engle of slopo $45,47,67,68$ ，
$70,89,159, ~$ 7．，
379
apothom 45，46，47， 108
203，206，208，209， 213 ，
262，264，368，370， 372. 373， 374

Chops．measurement（conta） base 1，28，31，44，46－47． 6se 1，28，31，44，46－47．
63，72，89－90，91－92． 63．70．72，89－90，91－92．
$100.168,111,112,113$ ， 100．1c8．111，112，
189，197，202，203， 20 189，197，202，203，206，
208，200，210，213， 365, 368，373，374， 378 brasse 206
Burattini $30,31,304,385$
canne 206
ole 202，203，207，208， 220,
323，362－68 pass sim， 386 olsworth 123
cubir 30－31，47，74．75， 77. 88，92，103．106． 112.145. 206－10 possim．213，264， 307，320，322－23，363． 365 368，370，372．
avidson 26
ecapode 206，209， 213
dgar，M． 113
1001 206，209，210，213 Golden Seotion（⿳亠丷厂阝hi）priopor－ ion）190．191，181－200 passim，359，367，368．369， 370．373，374，375．377，378 Greaves 28，30，31， 7
hoight $28,44,47,68,70,72$, 89，84．112，189，190， 197. 307．368，369，370－71，373
Howard－Vyse and Perring
67，68，69，70．89，90， 92
hch 72，74．75，90．92，93，
111，112，145
Pard，Coutollo，and Lo oro 24．47．68，70，90，20？ atifuda 84－85．206， 213
293，372，375
Newton 30－31，47，74， 112.
145． 305.323
paim 264
parasang 213
Peirie 98－98，100，101，103，
105，106，108，111， 112.
119，151，202，264，266－67，
323，324，362．363，366，
368
pi proportion 70－71，i7， 89 ，
0，101，106，113，126， 189 ． 190，359，367，368，373 plethron 206，209， 2.13 remen 206． 209 rod 209 scroenion，long 213

Cheops，measuroment（contd．） schoenion，short 206
Smyth 77， 78,81185 Smyth 77，78，81－85，89－91，
$94,100,107,108,112,145$ 23，100，107，100．112， 145 aladium 206，209，213，364， 372， 373
Taylor
94
$70-71,72,74,75,89$ 94
yadd，megallenic 209， 213 Nolsan＇s Chamber 63， 65 painting 2． 265
red octre $65,220,229,265-$ 66
pavement 68，90，106， 123, 124，145，220， 229 pit \｛well，Includhg shall and groltol $9,27,35,44,57-$ $58,78,81,100,234,236$,
238，239．241－47 passim， 249，251－52，255． 386
priamidtor（capstone） 68
203，371，372，373，374，
＂Queen＇s Chamber＂11，12，
26，62，130，239，210， 247.
252
sockets（corners）44，56，67． 90－91，108．202，357，359， 363
ircorics on 275，277，278－79
Avaroz Lopez 265，268， Anloni．adi 158，233， 253 Ballard 229
Baiber 223．226．231． 233. 269
Borchardl 220，236，238－39， 240， 368
Bruchel 251－52
Brunés 235． 261
Caviolla 59
Cotsworth 122－25．127． 226. 232． 233
Coltrell 239，240－41
Davidson 108，111，113，114，
116，125，245－47，240－49．
251．253，255， 287
Edgar，J．and M． 253
Edwards 220，227，229， 235
Funk－Hollot 158，262－63．
264， 267,270
Goyon $252-53$
Jomard 47，48，51，67， 72.
75，116．176，189，201，207．
208，212， 287
Kingsland 124．234． 253.
256．259． 270

Search inside
heops, theories on (conld.) NeCarly 270
Macnaughton 255
Macnaughton 255
Mrapagiolio and Rinaldi 229,
$230,240,242-43,249,252$ Mencken 107, 233, 243-44 Menzies $93,108,154$
Potrie 103, 105, 106, 218 ,
226-27, 228, 229, 231, 235. 236. 242.248 .249

Proctot 147, 149-56 passim. 158.253, 284, 391
myth 87, 89, 92, 99, 94, 96, 103. 106. 107, 108, 111
112,114 116.121, 122 207. 212, 267, 269-70, 384 Stecchinl 206. 287, 322-26. 359. 364-75. 380-8 Steward $218-19$
Taylor 70-71, 72, 74, 75-76, 77, 83, 89, 90, 94, 96. 106,
108. 116. 189, 207, 212 . 287. 392
see arso legends and suporstilione sbovo
tourists 2, 3, 81, 80, 100-01 well, see pit above Well Ingion's Chamber 63 see aso Giza comidex ment) 311,319 asure ment) 311,318
Chichon lisd (Mox.) ox.): ball coull Chins: measurement 304, 312 clironometer 176. 183 Cícero 259
circle: os sacred 260-61 squazing of 197. 198, 199, 200 Egyptten Masonry 229
Cla:ke Spteroid 295. 327, 331. 346
clepaydro, see water clock clinkstone 83,386 clinometer 81-82, 386 Coles. J. H Cheops' Pyiam measuiement 202, 203 207, 200, 220. 323, 362-68 passim, 386
Cologne, Baron de 289 column: Eoyptian 3 Greek 331. 332 compass (as symbol) 261 Copernicus 156, 175 Egyption 292, 299, 301-02 moot 301, 366-37, 343
cosmology (conld.)
soo also Golden Soction
soo also Goiden So
seven: triangle
Colsworth, Moses
386 , Moses B. 121-22,
on anciery astionomical studios 122, 125-27, 129.
141. 142, 146, 386

Cheods' P yramid' measure. ment 123
theory 122-25, 127, 228,
Itroll, Loo
Chieops Peyramid, theory 239, 240-41
mountains of Pliaraofi 239
Coutelle, Joan Maric Joseph.
Cheops: Pyramid، massure-
mont 1, $1,88,70,80,207$
Croon, L 231
cubit 47, 74-75, 200, 210, 212
300. 305, 307. 310. 315,
319. 320, 365
in Biblo 262-63
Chaldean 264
oengraphic (Greek) 201, 202
oengraphic (Greek) 201, 20 208. 207.208, 209, 211,
$2.13,266,303,319,32$, $2.13,266,303,310,32,51$,
$322,326,342.345,351$, 352, 369
great 216, 266
oyk Dełady 47, 206. 209, 213
Roman 305, 318, 319, 320 royal (Miemphis, profene: septonary) 30-31, 17, 106 $112,17 \%-78,209,213,216$,
$262-53,209-300,30$, 262-63, 299-300, 303, 305 332-34, 345, 366, 365
sacred 30, 31, 74, 77, 81, 112
145
see also Cheops, pyramid ot measuremenl, cubil a avaca (Mex.): Pyramid of Xochicatco
yril,S!. 4
Cyrus the Greal 262
Darlus the Great 214. 298
Darwin, Charles 76
Dashur: pyramid of Sneferu
28, 125-26, 133, 137,217.
226, 243, 268

Davidson, David 200
Choops' Pyramid: measurement 26.1
theory 108, 111, 113, 114, 151, 25, 245, 255, 297, 248 avison, Nathaniel: Ch
Ayromid, exploratlon 35-36, 38, 386
decagon 281
decans 386
ecapode (unit ol measure
ment) 206, 209, 212, 213
ochond, Hortha von: Homlo N III 174, 289, 297, 381
decimal units ol measurement
212; see also molric system
Gililoıd, Norman Frederick
Egypt, The Cradlo of
Decourdemanche, Jean Adoiphe 310
egree, sea lattiude
longilude
Dolphl 183, 184, 348-50
omphatos 349,3
Delphos 3.19
Deltz 180, 292-93, 299, 300 303, 335, 342, 343 Dematrius of Phateron 2
Domotetes 2
Oendera 386, 388
temple of Hathot 49, 168-69,
172. 386
zodiac 49, 168, 172-74, 175, 330
emple of lais 168, 286
Denis.-Papin, Maurico 278
vivant 387
Voyage dans fa basse el 10
Haute Egypre 51,387
Dessix, Gen. Louis Charlos
Antoine 48-49, 168, 172
ascrintion de PEOypre
$50-51,208$
id oulri 387
Diodorus Siculus 48, 387
on Choops' Pycamid 3, 45 , 371
Dionystus of Halicarnassus 2 Dodekascholnos 303 Dnieper River: landmarks used in surveying 346
dodona 103, 184,348-49, 350 Dibal, Karel 277-78 Druide 127

Uümichen, Jehannes 150. 387
Durie of Samos 2
07 circumlerence of 20607, 213, 315, 346 Alabs 6. 206
Egyp:ian 176, 210, 211, 215
326, 327, 347.370
Eralosiheres 22, 31, 215.
Gailieo 31
Heimert 334
obeliaks used in mossure
ment 210, 211
Picara 31
Plosemy 5-6. 21. 22
earth, flattening ol:
Egyplian $369-370,37$
Newtoll 21s, 262
soo also Ciarke Spheroid: Heimest; Interralional Spnstoid
arth, latitude and longitude
ol, see talilude and
longitude
Ediu 387
Edgar, John: Cheops' Pyranlid, theory 253
Edgar, Morton 115
Checps' Pyiamid: measurement 113
theory 253
Cheops' Pyramid, theory 220. 227, 229.235
Egypt dynaslies 387.389
Egypt. dynasties 387. 389
Middle Kingdom 201-02. 280
New Kingdom 390
Northem (Lowet) 293, 294
299, 322
red straw as symbol 293,
300
To-Mehu (hieroglych) 300 .
353
Southem (Upoer) 293, 284 299, 322
white wool cap es symbol
white w
293
To-She
O-Shemau (hieroglyph) 296, 353
To-Mera (hletoniyoh) 290. 282. 377

Egyptian mysterles 256-5t. 259-67. 285-86. 387
1و!1, see octegon
Eins!ein, Albert 278

Elephantine 38
Elephantine 387
nilomotor 47
observatory 177
teven, see undecimal unts of measurement
Igin. Thomas Buike, Lord
61, 386
lizabeth, Oueen 31
Engelbach. Reginald L, 220,
360.387

Ancicit Egyptian Masonry
228 ,
England: mpasuremen
305, 309, 343-45
305, 309, 343
acre 74
acre 74
foot 22, 23, 24, 27, 72, 207,
305, 311-12, 343-45
grain 309, 313
incli 72, 73-i4, 75, 77. 90. 108, 111 miessuting iod 27, 82-83
mlie 31, 74
ounce avoirdupois 30 ounce Tower 313
ounce troy 313 ounce troy 3
quarter 75
yard 74.344
Imperial 311, 360
see a/so Britain
Enocn, see Hermes
Tilsmegisios
Eratosthenes 22, 31, 45. 183,
215-16, 285, 323
Euclid 6. 377
Euhenierus?
Fakliry, Ahmed 225, 28
lalhom, see brasse
Fibonecci, leonardo Bigollo 192,387
Fibonacci series 192. 194. 285. 358,387
nger (unit of measurement)
209, 212. 264, 305, 318, 365
Firat Cataract 178, 295, 206,
302-03. 333
Firth, Cecil Mallaby 387
five' live-pointed star 261-0e
37
pentacon 261-62
Finders, Matiliew 96
Finders Petrlesee Petrie,
William Matheow Flinders
fool (unit ol measuromentl 33
Egyptian 33, 206, 208, 209,
210 212, 2. 13, 3C5, 307.
309. 310. 312. 319: s9e a/so
geographic bofow
Englieh 22, 23, 24, 27, 72,
oographic (Greek) 24,206.
joographic (Greek) 24,206.
208 209, 213, 216. 312.
314, 318, 350-51, 352, 356.
359, 360, 301
Mycenean (Oscan; tlelia)
352, 355, 358, 360, 369
parsian 206
pied de rol $38,311,318,363$ Plolemaic 207
Roman 22, 23-24, 208, 304,
305, 309, 310, 312, 316,
317, 318,319, 350-51, 352,
359, 360, 363
cubed icoometric: sclemitic:
quadrantal: pes
Quadrantus) 310-11, 312,
$318-19$
318-19
longer (pes Aebutianus) 310
(pes Siatilianus) 310
hited States 311
units of mearier: quatemary
units of measurement
France: measurement 362-63
gratin $308-09,313$
livre $309-09,313$
measuring rod 32
ounce 309.313
oled de $10138,311,318.383$
toise 33, 38
see also meter, Fronch;
motric systom, French
ree Masons 256. 259. 261
apion ıesembsin
napkIn 195
napkln 195
Cheops
38, 256, 261, 301
straighiedge and compass as siraighledge
symbol 261
Funk-Hellel, Charles 19
Ls Bible el la Grande
Pyramide d'Egypto 262-66
passim
heops' Pyramid, theory 156 262-53. 264. 267. 270
urville. Henri
La Sciences Secrete 260

Gaien 5

Galtheo (Oatileo Gailiai) 30, 31, 156, 316

Garnier. Col. J. 118
Gauguelin, Michal: The Selentitic Basis of Astroogy 281, 282
geodesy and geography 5. 21 . 176. 177, 180-85. 189, 201,

202, 203, 207, 214, 215 .
$293-303,317,320-21$,
326-27, 332-35, 330-43,
345-47. 362-70: se0 also
earth: Eratosthenes: land
surveying: measurement:
Mercator projections
Polemy: sphoroid
metry soo malhemotico
Germany: Cologne ounce 313
mark 313-14
Oheming 340
Gibbon, EdwardS
Gizo complox 1. 35, 59, 80, 266
legends and buldihg
219-20, 222-35
pyramids as basis for
computing triangulation
$98-99,117,119-20$
soo also Choops, Pyramid ol: Kephren, pyramid of; Mykerinos pyramid gnomon, geadetle 387
Golden Cnersonnesos 185
Goiden Section (ohl propor-
tion) 190, 191, 193-200
pessim, 262, 285, 359, 307.
360. 369, 370, 373, 374,

375, 377, 378, 385, 388
and pl proportion relation to
Gonoid, Amr 273, 275
Goths 127
Goyon. Georges 252
Chanps' Pytamid, theory 252-53
grain (unlt of measurement):
Eng1 sh 309, 313
giam (unit ol measurement) 304. 309, 313, 314, 318, 319, 320
Greaves, John 21, 22-23. 2829, 96, 309, 388
Cheops' Pyramid: exploration 24-30 passim measurement 28, 30, 31, 70 , Pyramidographis 29, 389

Greece: architecture, seg Acropolls: column, Greek; Parthenon
astronomy $5-6,21,22,31$.
138, 215, 285 138, 215, 28 1800esy and opography 183. 105, 215, 302; see efrso
Eratoslhenes; Prolemy
mathemotics $195,261,262$, 331-32, 372, 377: seo a/so Euclid Pythagoras
measurement 24.306, 308 311. 350-51, see also cubil, geographic, lool
or acles, see Delphi; Dodona Gregoty I, Pope $139-10$
Groves, Brig. P. R. C. 108
Guignaud, Maurice: Faticon 140-47

Hall, Manly P 284-85
hand (unit of measurement) 305 318. 321
Hapy \$゙b
Harun Al-Rastiv 5
Harvan, Sultan: mosque, Catro 18
Hassan, Selim 224 Dendora, temple of Hathor Hawkins, Gerald S.: Stonehonge Decoded 150
Haylord. John Fillmore 112. 343. 369; see also International Spherold Hellopolis (Annu: On) 234-35: 388
temples 167, 168, 3 Helmerl: 214,388 orith circumferonce of phoroid calculoted 322, 327, 329, 369
Heluan 269
Henry I. King 314
Heraclitus 259
Hermes (god) 284; see also Thoth
Hermes Trismegistos (Enoch) 218. 389

Hermopolis Parva. see 8er det Herodotus 47, 48. 185, 177, on Cheops' Pyramid 2-3, ©

Herodotus (conta) 7. 190. 194, 196, 201, 222. 225-20, 231, 234, 307, 368. $\begin{aligned} & 370,374,375 \\ & \text { Hiarory } 2,388\end{aligned}$
Horschel, Sir John 89, 149. 186. 264 . 388 unit of measurement 72-74 Hetepheres, tamb ul 238 hexagesimal units of measuremont 187

hexagoon 261

hieroolyphs 3, 38, 103, 176. 177. 280. 294. 296. 333 on Cheops' Pyramid. reports determinalive
for Egypl (intermediary disticl\} \{97. 300
lor Egypl (TO-Meria) 290. 292, 377
for Egypt, Northem (To-Mofiv)
for Eoypt. Southem (Ta. Snemau) 296. 353
for merldians and parallals 298. 349

Acosotla Stor, 55, S5, 65, 385 "Unity of Egypt" 300-01 Hill, Mr. 67
Hipparchus 45. 145. 215. 285
Hiram Ailff 263
on Cheops' Pyriamld 142 Holland, Thomas 270 Homer Odyssey 185 Horn of the East" 339 Horus (god) 387. 388, see also Apollo
Howard-Vyse, Richerd 59, 81 388
Choops' Pyromid, exploration 59, 61. 63, 65, 67- 68, 81. 101. 105. 385, 386. 388 Dashur. pyramid ol Sneferu, exploration 268
Oporations Carried on at the
Pyramids ol Pyramids of Gizeh in 1837
69,388 ultsch. Fr
tisch. Friedrich 307-08, 309, yksos 388, 390 Hypatia 4
Dr-Bamla 218. 389
brahim ben Eon Wasulf Shah

Imhotep 168, 217, 320, 375 76. 377, 384. 389., 391: see a/so Saqqara, pyramid
inch (unit of measure inert)
Egyplion 72, 74, 75, 00, 92.
93, 111, 112, 145
English 72, 73-74, 75, 77,90. 106, 111
Romián 305
Inglla, Mr. 80.91
Ingternatlonal Spheroid 328 ,
327, 331, 346 365, 369
retand: "Rouna Towers" 140 Ismall Paslia 78
Israel: cabatistic symbol of
triangles as emblom 301 see a/so Jews

Jeflerson, Thomas 316
Jerusalem 183
Taber nacte 262
Tample 31, 263
Jows 302
Arc of the Covenant 278
amblem of israel csbalistic
symbol 301
egends about Cheop
Lost Tribes of tsraol 75
mathematics and measure
ment 31, 282-63. 306
mile 212
Mount Gerizim as center of Worahip 183
seo a'so cabala; Jerusalem: Jomard, Edme-Ftancols: Cheops' Pyiamid: oxploralion 44
mesourement 44-68.202, 206 207, 208, 210
theory $47,48,51,67,72,75$
116. 178, 189, 201, 207.
212. 207

Jonas, Dr. Eugen 28:3-84
Juaophuo 31,217
ka 389
Kamax; temple ot Amon-fa 161. 185
temples 105, 195, 391, 392 Kephiren 271
Kephren, pyramid of 1,224, $272,320,325,378-79,380$,
381,384

Kephren (tonta.)
examination by cosnulc rays
271-72. 275 ,
Potrio, moasuromont 325
378, 381
partcullis 235
see also Glza cornplex
Kepler, Jchannes 156
342.

Kher-atis (Kerkasoros) 33
Khulu. see Cheops
kllogram (unit of measulement)
300
Kingsbury, Donald, Cheops ${ }^{\circ}$ Pyramid, theory 255 Kirgsiand, William 284
Cheops' Pyramid, theoty 124 234. 253. 256.259, 270 cher, Falher Athanasius 30. 305, 386, 386
Knights Templar 140, 258
Kolesimo, Peter 269
Terra Senza Tempa 219
Lake Nooris: pyramide 268
lond survoying 98-99. 117.
-20, 29
bas1 372
merkhet 280
theodolite 84, 96, 99, 392
Irianguíation 392
Dnloper River tandalarks used 346
Nile landmarks used 117. 180, 339-40, 34
Langlois3ed
alitude and langitude 6, 21.
22, 32-33, 46, 47, 73, 84-
86, 138, 146, 147, 149, 151.
152. 154, 174, 176, 177.
$178,181,182,185,189$. 199-203, 206. 207, 209-15. 293, 314, 315. 321, 322, 323, 326-32. 334, 335, 342. 343, 345-"48, 351, 352, 365, 369. 372-73. 375, 390 birds as symbol 299.349 net as symbol 301, 349 Tablos $178,315,317,32$ 322,327, 334, 345, 316-47 350
ealso sidereal lime; solar lime
auer. Jean Philippe 194208. 221, 378-77
La prob/ame des Pyramides
ohmann.Haupt, Carl Friedilch.
on ancient measurement
315.316
lens Ifor astronornical
computatlon) 219
Le Pere, Gratien: Cheops
Pyramid, maasurement 47. 88, 70, 90, 207
Lepsive, Kall Richard 339
ibra (unil ol measuroment)
308-13 passim, 318
183, 389 183. 38

Cram. Aiex ander Willian Grawlord, Lord 56, 369
measurement
Lisht: pyramid of A menemnet 226
ivre \{unll of measurement\} 308-09, 313
ockyer. Sic Joseph Norman
astonomical theories 159. 161. 165-69 pass/m. 172.
174. 234
The 0 awnol

The Dawn ol Astronomy 159, 169
Lost Tribes of Israel 75 Lisxor 389; see a/so Thebes

McCerty, Louls P: The Great Pyramid of Jeezell 270 Macnaughton, Duncian: A Scheme of Egyptian
Chronology 255
Mags.Mowe (Seot.) 130, 133,
Mass. Howe (Seot.) 130, 133.
$137.145,255$
137. 146, 255
naer ituth or fustice) 301,
$336-37,343$
Mamun, Al, 000 Abdullah AI Mamun
Mandeville, Sit John 27, 389 Maneitho 387, 38
Mer aglogillo. Vito; L'Archl-
telture dello Piram
Choeps' Pyramid, theoty 220
230. 240, 242-43, 249, 252.

Marlette, Auguste 389
Mark Anitony 3
Marliny, Gunther 105-66

Masons, see Free Masons Maspe io, Sit Gaston Camille Charics 146, 165, 169, 185, 383, 386,389
mastata 126, 146, 153. 389
Masual. Al 5
mathematics

mathemalics
Eritain 137

Egyption 18, 72, 178, 180,
191, 194-200, 261, 285.
290, 292. 293, 308, 307.
328377
Greek 185, 261, 262, 231-32.
372, 377; see Pythagoras eso Euclid,
Rhind Papyrus 71-72, 261, 379. 391
square root 372
see a/so circle, dec agon, Fibonacol series; Golden Section: hoxagon: pentegon: pI proportion: square: tulangle: Indivdual numbers
Mauportuls. Pierre de 363 Maypoio (Ior moesuring time) 129.133, 146
measurement 304.307. 319
Akxacilan 312.319
Assizes orworighis
Meaeures 314
Babylonian and Mosopota.
mian 21 4, 216. 266. 304. 308, 315. 380
Chinese 304, 312
decimal units 208, 209,212. 213, 261, 286; 500 at
meltic sydom
devices and Instr
armillary sphere 155 astrolabe 155
chronometer 176, 183 olinomoter 81-82. 386 snomon 387
hourgtass
lens 219
as Masonic symbols 261
Maypotc 129, 133, 146
nilometor 47,390
obelisk, seo obelisk rod, measuring, see 100 , measuring
rod, rino-carrying 155, 156
sextani 84.96
sundial 153
teiescope 162, 156, 159
measurement (contc.)
theodiolise 84. 86.99 lube, direcilon 155, 158 varnior 82, 96, 392 esssels 306
water clock 152. 158 304-10 passim, 317, 320. 328
English, soo Englend,
measurement
French. see France
measutemen
German 313
Greex 24. 306, 308, 311, 350-
51
Herschel $72-74$
nexagesimal units 187, 261, Jc:wo 31, 262-63, 306
Jews 31, 262-63, 306
longth, unite of 307, 308,
$309-10$
medieval European 305. 308
Mycenean 351-53
quaternary unils $75,212,352$, 353
Roman. see Roman Empire, measureinen
Russia, 344, 346,313,
318. 344, 346
septenary unils 185, 187, 294.
$302,305-07,321,326$, see aiso atur; cubil, royal exageelmal units 187, 212
standards, concorn with: in
antiquiry $308,315,351$
In Renaissance 308. 30A, 300. 317, 351
Sumerian 176, 309, 312, 315, 372
undecimal units 305-07, 3i1
volume. Urilts of 306.307.
309. 310
weight. units ol 307, 366, 309,
310
sec also carth; lend surveying: mathematics; time: individual numbors and units of measuro Mecca 184. 340
Kaaba 184
Medim. nyramid 125, 127. 133. 137. 217. 226. 392 Mela. Pomponlus 370-71
Memphls 101-82, 297, 391 templos 262

Mencken, August 234, 253 Cheops' Pyramid. theory 107. 233, 243-44
Ocsigning end Buliding the
Greal Pyramid 107 Greal Pyfamid 107
Menon. C P
Astronomy and Cosmofogy
184 Monziog, Robert: Cheops'
Pyramid. thoory 93, 108, 114. Gerhardus 285

Mercator. Gerhardus 285
Mercator piojections 184, 786.
Me rcator piojections 1at, 206
200,
Mercury (planot): ossoclaltion
with god of measurement 294
merldian. see tatilude and longliude
Meros 390
Mesopolamia: astıonomy 178 -
77 315,390
cubil 2 ie
pound 304, 308
see 2lso loot, goographlo ziggurats 184, 302
see also Akkadian; Babytonia neter: absolute 265, 266 Burattini 304
Chaldoan 264
French 38, 73, 264, 311, 318, 363. 369
metulc system, French 304. 305, 309, 310, 335, 363 adoplod by Russia 305, 311
adoptod by Spain 314 adoptod by Spain 314
dropped by United States dropp
316
Meynr, Eduaid 321
Middlc Agos: measurement 305, 308, 311
mile (unit of measurament) 213
Arabic 5
Egyptian 212. 213
English 31, 74
Hobralc 212
Roman 351, 352
Miletus, Bishop 140
Minutoll, dohann Heinrich Carl 390
212 noira (unit ol measurament) 212
quarries $63,220,222$

Montagu, Edward Wortley 35
396 396
Montel, Psul 376
Moses 259. 262
Mount Gerizim 18
Muck Gerlzim 183 Greal Pyramid 143, 145 , 146
Murad Boy 39
Mycenae 351, 352
Grave Clicle 355
Urin Gate 353-54, 355
Myceneans 351
cosmology 353
measurament 351-55, 359,
361
foot (Oscan, llallc) 353. 353
358360,381
Mykerinos, pyremid of 1, 224
sar cophagus 69
see also Gixa complex
Napata: temple of Amon, ofnphalos 302
Napoleon 38, 50, 55
in Egypt 33-39, 50, 305
vicil to Cheops' Pyramid 49 50

302: see a/so omphalos
navigation 5, 308, 314,321.
351
efentiki 336
Nolson, Adm. Horatio 65
Neroman, D.ir La Clè Secrere
de la Pyramide 112
nel las symbol) 301, 349
Newton, Sit bsace: Cheops'
Pyr amid, interprotation of
measuroments $30-31,47$.
74. 112, 145, 305, 323

Dissertation upon the
Sacred Cubit . . . 31
eath flattented al poles 211.
362
gravitati
gravitation, theory of 31-32.
311. 385, 300
on precession of the
equlnoxes 148
Principis 32, 33,
telescope 133
Nite 292, 317,339
liooding 117, 142-43, 226, 228, 233, 282 H3py 383
landmaiks used in surve.ying
117, 180, 339-10, 346
see also Della; Firsi Cataract
nllometer 47, 390

Nhopolis, soe Pi-Hapy Nimrod 183
Norubill Richard 31
Novgorod (Russia): Churen of
Si, Sophia 312
Nubia (Cush) 300
obelisk 155, 210-11, 390. 392
Cotsworth on 122, 128, 127.
146
maypole as 129, 133, 148 Muck on 146
pyramdion 203
and Sphinx 33
octagon 281
omphalos (navel; as geodetic mark and symbol) 182, 298, 302, 338, 349, 380
On, soo Hollopolis
orgyla (unit of measurement)
$209,212: ~ s e e ~ a l s o ~$ Oscan loot, sea foot, Mycenean Ostranver, S. 283
ounce (unit ol meazuremonit):
artabio (Cologno ounce;
ounce Tower) 313, 314
avoirdupois 309
French 309.31
Roman 318
Roman 313
Oxt, Auguat 300-10
Pacioll, Luca 193
paim (unir bi measurement) 209. 212. 264

Paraceisus 107
paraltel, see tatilude and
longitude
parasang (unit of meseura-
ment) 213
Par thonon: columns 332. 360. 361

Paul. SI. 259
Pelusium 299, 303
Penrose, Francis Cranmer 356
Parthenon, measutemen
$355-58,350,359,360$
pelliagon 281-62
Pepi 390
Pepl 390
Pepil 168,390
Pepin 313
Pepin 313
Porting, John Shav 59, 67, 39
Dashur, pyramid 268

Perring (contd.)
The Pyramids ol Gizoh from Actual Surver and Measurement on the Spot Persepolis 183, 214. 2
tomb of Daslue 298
Persia: measurement 213. 214, 298
see also artaba; tool.
geographic; parasang
Petor tho Groat 311
Petrio, William 96,97
Petile, Sir Willlam Matthew
Fillnders 96. 107. 208. 383.
ar ancient measurement 315 ,
317 317
heops' Pyramid: explartion 97-G8 99, 105, 228. 229, 234, 247-48, 251, 279, 323 101, 103, 105, 106, 108, 111, 112, 119, 151, 202, 264, 266-67, 323, 324, 362, 363,386, 368
theory 103, 105, 106. 219, 226-27, 228, 229,231, 235. 236. 242, 240.249 measurament 325, 378, 381
The Pyramids and Temples of Gizeh 106
Pharzoh 281
cartouche 65, 385
crowns 293
royal cubit as symbol 307
321 as symbol 307.
Unity of Egyor" as thr
decoration 300-01
decoration 300-01
see eliso oborak
Phiton of Byzantium: on Cheops' Fyramid 371 phi proportion. see Golden
Section
Phoentclan (lang.) 302
pli, see pi propotion
Piazzi, Fathor Giuseppe 77
Piazzi Smylh see Smyth. Charles Piszz1
Plcard, Jean 32, 311, 362, 390 pled de roi (unit of, 362,390

383 (Nicolis) 178,333. Pr-Hapy
334335
Pindar 259
H83 (Nlicpolis) 178. 333. 12

Search inside
ont (unit of measurement)
312,318
pl proportion 70-i 1, 77, 89, 90, 101, 106, 117, 13, 126. 189, 190 185, 196, 263, 285. 308. 359. 367. 368 , 373.374.
390.392
and Golden Scetion, relation to 194, 377
Plato 5, 48, 119, 259, 262
Timaeus 119 . 147. 191, 262
plethron (unit of measurement)
$206,209,212,213$
liny: on Chaops ' Pyromid
liny: on Chaops' Pyromid 3,
208, 231,371, 373
Pococke, Richard 390
Poge, A. 148
pote (unil of measurement)
212
212
pound (unil of mossuramont)
Proclus 14?
Proctor, Richard Authony 281
391.

Cheops' Pyramld, theory 147
14256 passim, 158.253. 284, 391
The Greal Pyramio.
Observaroty, Tomb, and
lah (god), 375, 3
Plolomy 6, 21, 22, 183, 215
Aimagest 5
ork helady see cublt. oyk belady
pylon 159, 165, 391
pyramid $22,126.133,137,149-$ 50, 177. 184. 217, 236, 302,
apothem 38
Colsworth on 125-27
as goomeltic shape $277-78$ logende about 217 pylamidion 203, 37 Stecchlal on 177
Zaba on 149-50
see atso bullding constuc-
see afso bullding constuc-
Oashur, pyramid of
Snetory; Kephiren, pyramto of: Madùm, pyramid;
Nykerinos, pyramid of:
Saqqata, pyramid of Zoser
yramidion 203. 371
ythageras 22, 48, 259, 262.
followers 262, 377
quadrant soe lalitude and Ionoitude
uadiantal (unti ol measurement) $310-11,312,318-19$ quarter (unit of moasuricment)
${ }^{75}$ gualernary units of
measurement 212, 352. 353 gedet (unit of measuremenl) 320

Ra 284, 391
am (as symbol of Amon) 302 Ram, cult of the 169. 172, 174 Rarreses 11389
Rameses IX, tomb of 194
Ras Alula 339
ectanglo (os symbol) 297, 300
Poich, Wltholm: orgone
energy 278,282
Reisner, George Andrew 391
emen (unit of measurement) 206.209
meassureme: concorn with measurement etandards 301 304, 308, 317, 351 measurement 359 - 50 hithd, Henry Alexander 72 301
hind Papyrus 71-72, 261, 379, 381
Ricke, Herben 376
Anaidi, Celeste: L.
naidi, Celeste: L'Architertura colle Rir
$228-29$
Cheops' Pyromid, ltsoory 229
230, 200 242-43. 249, 252
ad (unlt ot measuremeni) 209,378
Iod, measurino: Eoyptan 17778, 320, 332-34,
English $27,82-83$ Erench 32
French 32
medievol European 30 rod, ring-carrying (lor astronomical computation) 155, nomic
156
Roman Empire: measurement 350-51
aene (ulioerum) 370 cuolt 305. 318 319. 320 oot see foot, Roman Incti 305
llbra 308-13 passim, 318

Roman Empise (contd.)
milo 354, 352
ounce 318
Rosetta Slone 51, 55. 65. 385
Rostcrucians 250
hussia: measurement 305.311.
312,313,344,346
arshin 305
Francli meiric sysiem
edopled 305, 311 adopled
sajen' 305,311

Sacred Sycamote 303, 322 sajen' (unit of meazurement) 305, 311
a. Giargio de 189.

200
297, 381
Sacqara 181, 269, 207, 381 pyramid of Zoser 28, 125. 126. 133, 137, 217, 320. 375, 386. 391 Zoser's Complex 375, 376.
377
soo a/'co Scka
Sardis 183.348
Santion. Geor0e 15
Saurk, see Surld
Schliemann, Heinrich 204, 260 hmoliz, John B.: Nuggets trom King Sofomor's Minos 112
senoenion, tono (grand: orasi Egyplian, unh ol schoonion, shot (unit of measurement) 206, 209, 212
Schroeder, L. 283
Schwaller de Lublcz, R. A. 145, 169, 172-73, 181, 191 194, 169, 172-73, 183, 266, 391 - Tomple de i'homme 115. 264
Second Pyramid, see kephren. pyramid of
Sogré, Angelo 287. 310
Sothilos 217
sevan 2 It
seven (septranary units of 305-07.321. 326, 370
in ziggurats 185, 187, 302
see olso atur; cubil, royal; sajen'
sexagesimal units of theasurement 187, 212
sexagesime (
nient
coxiont 84, 86, 301
shegel (unit of measuroment)
312
sidereal time 111. 153, 317.
347-48. 392
Siemeris, SirW. 278-79
Silbury Hill (Eng.) 127, 129,
Simpso
Simpson, Sir James Y. 94
six: hexagesimal units of
measurement 187
hexagon 261
six-poinied star 301
sixty, soo sexagosimal units of measurement
aston 260-61 Smith, Worth 278
Smilth tablet 186
Smyth, Charles Plazzi 78, 77 82-93, 96, 107. 108, 122. 208, 312
Cheops' Pyramid: exploration
78. 80-81, 91, 100. 101
measulemem $71.16,81-85$
89-91, 94, 100. 107, 103,
112, 145, 323, 324
96, 103. 106, 107, 108, 111 ,
112. 111, 116. 121.122
207. 212. 267. 289-70. 384

Life and Work at the Great
Prranid of Jeezeh. .. 93
Dytamid 06 in the Great
Sneteru 125-26.
Sneteru $125-26.217 .392:$ see
also Dashur. pyramid of
Sneferv; Medom, pyramid
Socrates 262
Sokar (god) 297-98, 302, 391
Sokar (place) 181-82, 297, 298
299; ses also Saqqara
143, 207, 316-17, 347-48,
53, 207. 310-17, 347-48
Solomon 263
Solon 48, 250
Sophocles 259
Sothic time 45. 392
Spaln: Frencli meisic system adopted 314
sphoroid 327: see s/so Clarko pheroid; Helmert:
Sphinx 33. 268, 270, 386
squaie: as sacled 260,261
as symbot 297, 300
squase (cortid.)
asunit of m
stacium (unir of measurement) 31, 45=46, 47, 206, 209, 212 213. 294, 315, 326, 351, 364 365. 389-70, 372, 373: see also khe
tor: live-pointed 261-82, 377
Ste cchini, Livio Catulto 216.
263. 265. 266-67
onanctert measurament 174. 176-77, 178, 180-88 passisim 184, 201. 202, 206, 211. 214-15, 287-392
cheops' Pyramid, theory 206 ,
267,322 -26. 359, 364-75, $380-81$
Steward, Basil: The Nfystery of the Groat Pyramid 218-19
Stonchongo (Eng.) 06, 120.
139, 147, 159, 165, 169
stoneworking, seo bultidind constuction: tools, for
Strabo339
on Cheops" Pyramid 3, 45, 37
History 3 (as symboll 26
Straightecge (as symbol) 26
Stuan. Jarnes' Parthenon,
measusement 359-60
Sumerians: measurement 178,
-308,372
sila (pint) 31
sita (pint) 312
sundial 155
sunspots 155. 281-82
Surkd (Sauld) 218
Susa 183
Sutzu, Prinee Mihall 308, 318 Syone (mod. Aswon) 178. 20 211, 333, 334, 387, 392
quarres 220.392
Sykes. Edgerton 288-69
talant (unit of moasuromont)
319-20
Tayior. John 70. 75. 93. 107. 185. 208. 392
messurement 70-71, 72
measurement 70-71, 72, heory 70-71, 72 77, 83, 89,90, 94, 98, 106, 108. 116, 189, 207, 212. 267, 392
theory (contd.)
The Great Pyramid. Wiy IWas "B Bill? \& Who Buitl II? 76. $3 \theta 2$
Loloscopo 152, 156, 150, 176
Tellefsen, Otal 231-32
Tell el-Amarna 201. 337: ses
z/so Akhtaten
emplars, seo Knights Templar
en, see decans; doorgon; measurement metric system
Tepe Gawra 309
Thales 2 , 100 ,
Thebee (Wool; and Luxor) 302, 303,
Labyrinth 317
tempie of Amon 165. 194-95, 303, 322, 338, 348, 349. 350, 383, 389
moaeuring ruios 177-78, 332-34
omphatos 182, 302, 338, 349
remples 252
heodoull 84, 96, 99, 392
Theon 4
Thom, Aloxandse: Mogatithic
Sltos in Britain 137-38
Thoth (god) 260. 392: sse also Hermes
Thothmes III 183
time anomalisllic 111, 384
devices and inatrumenta
measurement of, see
gnomon: hourglass:
Maypole: cbellsk: sundia):
water clock
Weter clock

sidereal 111, 153,317, 347| 48, 302 |
| :--- |

solar, soe solar time
Solhic 145.
rlian 194
coise (unit
loise (unit of measuiement) 33 ,
38
loots: for moasuring. 800 measurenient, devices and Instruments :or stoneworking 103. 222. 228, 229, 323
tranigle (ossocred) 103,119 , 139, 194, 261, 290, 292
triangulation 392; see also
land surveyinig
rtoy 264
ube, direction flor

Tube (contd)
astionomical computation) 2stionam
155
Tunstall. John 273, 275 Turonno, L. 278

Udimu 369
undecimal units of
measurement 305-07, 311
Unitod Statae: Choope Pyramid on sosil 38, 301 Cor 311
Fiencin meltic system considered and dropped

United States Naval Obsenalory (Washington. D.C.) 153
"Unity of Egypt" 300-01

Ur: ziggurat 184 Usuk 2100 gu at 184
Varro 371
Argonoulica 185
Verdi, Giuseppe: Aido 78 vemier 82, 98, 392 Veronase, paoto 194
Yollalie 363 volumo. see measurement
Wadi IAggharah- quarries 65
Wast, see Thebes
water clock (clepsydra) 152,
water clock (clepsydra)
158 Watking, Alfred: The Old Straigh Track 139-40 weighl, see measurement
Wenlinion. Amhur Iveilesiey, Werlingion, Anthur Weilestey Duke ol 56, 59, 83

White Nile 339
Hood, H. G.: Ideal Motrology 140, 183
yard (unit cf measurement): English 74, 311, 344,360
megaiilhic 137, 139, 209213 meoalithic 137, 139, 209213
Yazollno. Lauren 273, 275

Zoba, Zybnak 149-50, 174 ziggurat 119, 177, 181-85, 18688. 189, 279, 302.378, 382 odac 145. 158, 174. 294-99 in Dendera
Zoser 168, 217, 320, 375, 384, 386, 391: see 8/50 Saqqara, pyramid of Zoser: Saqcara. zoser's Complex

[^0]:

[^1]: - Al Seyno the degree of longitude is 110.791.11. Al Aloxandria it is took the mean lor Egypt.

